JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A STUDY ON RECTIFYING CURVES IN THE DUAL LORENTZIAN SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A STUDY ON RECTIFYING CURVES IN THE DUAL LORENTZIAN SPACE
Ozbey, Emine; Oral, Mehmet;
  PDF(new window)
 Abstract
In this work, we give some characterizations of rectifying curves in dual Lorentzian space. Also, we show that rectifying dual Lorentzian curves can be stated by the aid of dual unit spherical curves.
 Keywords
dual Lorentzian space;rectifying dual Lorentzian curve;Frenet formulae;dual Darboux vector;
 Language
English
 Cited by
1.
Rectifying curves in the three-dimensional sphere, Journal of Mathematical Analysis and Applications, 2015, 421, 2, 1855  crossref(new windwow)
2.
Rectifying Curves in the Three-Dimensional Hyperbolic Space, Mediterranean Journal of Mathematics, 2016, 13, 4, 2199  crossref(new windwow)
 References
1.
N. Ayyıldız, A. C. Coken, and A. Yucesan, On the dual Darboux rotation axis of the spacelike dual space curve, Demonstratio Math. 37 (2004), no. 1, 197–202

2.
N. Ayyildiz, A. C. Coken, and A. Yucesan, A characterization of dual Lorentzian spherical curves in the dual Lorentzian space, Taiwanese J. Math. 11 (2007), no. 4, 999–1018

3.
B. Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), no. 2, 147–152

4.
B. Y. Chen and F. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77–90

5.
H. W. Guggenheimer, Differential Geometry, McGraw-Hill, New York, 1963

6.
K. Ilarslan, E. Nesovic, and M. Petrovic, Some characterizations of rectifying curves in the Minkowski 3-space, Novi Sad J. Math. 33 (2003), no. 2, 23–32

7.
B. O'Neill, Semi-Riemannian geometry with applications to relativity, London: Academic Press, 1983

8.
H. H. Ugurlu and A. Caliskan, The study mapping for directed spacelike and timelike lines in Minkowski 3− Space $R^3_1$ , Mathematical and Computational Applications, 1 (1996), no. 2, 142–148

9.
G. R. Veldkamp, On the use of dual numbers, vectors and matrices in instantaneous, spatial kinematics, Mechanism and Machine Theory, 11 (1976), no. 2, 141–156 crossref(new window)

10.
Y. Yayli A. Caliskan, and H. H. Ugurlu, The E. Study maps of circles on dual hyperbolic and Lorentzian unit spheres $H^2_0\;and\;S^2_1$, Math. Proc. R. Ir. Acad. 102A (2002), no. 1, 37–47

11.
A. Yucesan, N. Ayyildiz, and A. C. Coken, On rectifying dual space curves, Rev. Mat. Complut. 20 (2007), no. 2, 497–506

12.
A. Yucesan, A. C. Coken, and N. Ayyildiz, On the dual Darboux rotation axis of the timelike dual space curve, Balkan J. Geom. Appl. 7 (2002), no. 2, 137–142