JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RICCI CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM
Kim, Jeong-Sik; Dwivedi, Mohit Kumar; Tripathi, Mukut Mani;
  PDF(new window)
 Abstract
Involving the Ricci curvature and the squared mean curvature, we obtain a basic inequality for a submanifold of an S-space form tangent to structure vector fields. Equality cases are also discussed. As applications we find corresponding results for almost semi-invariant submanifolds, -slant submanifolds, anti-invariant submanifold and invariant submanifolds. A necessary and sufficient condition for a totally umbilical invariant submanifold of an S-space form to be Einstein is obtained. The inequalities for scalar curvature and a Riemannian invariant of different kind of submanifolds of a S-space form are obtained.
 Keywords
S-space form;almost semi-invariant submanifold;-slant submanifold;anti-invariant submanifold;Ricci curvature;k-Ricci curvature;scalar curvature;-invaraint;
 Language
English
 Cited by
1.
Chen-Tripathi Inequality for Warped Product Submanifolds of S-space Forms, Annals of the Alexandru Ioan Cuza University - Mathematics, 2012, 58, 1  crossref(new windwow)
 References
1.
A. Bejancu, Geometry of CR-Submanifolds, D. Reidel Publishing Co., Dordrecht, 1986

2.
D. E. Blair, Geometry of manifolds with structural group $U(n)\;{\times}\;O(s)$, J. Differential Geometry 4 (1970), 155–167

3.
D. E. Blair, On a generalization of the Hopf fibration, An. Sti. Univ. “Al. I. Cuza” Ia,si Sect. I a Mat. (N.S.) 17 (1971), 171–177

4.
D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Progress in Mathematics, 203. Birkhauser Boston, Inc., Boston, MA, 2002

5.
D. E. Blair, G. D. Ludden, and K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973), 175–184 crossref(new window)

6.
J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, A classification of totally fumbilical submanifolds of an S-manifold, Soochow J. Math. 18 (1992), no. 2, 211–221

7.
J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, The curvature of submanifolds of an S-space form, Acta Math. Hungar. 62 (1993), no. 3-4, 373–383 crossref(new window)

8.
J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, On certain anti-invariant submanifolds of an S-manifold, Portugal. Math. 50 (1993), no. 1, 103–113

9.
J. L. Cabrerizo, L. M. Fernandez, and M. Fernandez, On normal CR-submanifolds of S-manifolds, Colloq. Math. 64 (1993), no. 2, 203–214

10.
A. Carriazo, L. M. Fern´andez, and M. B. Hans-Uber, Minimal slant submanifolds of the smallest dimension in S-manifolds, Rev. Mat. Iberoamericana 21 (2005), no. 1, 47–66

11.
A. Carriazo, L. M. Fernandez, and M. B. Hans-Uber, Some slant submanifolds of S-manifolds, Acta Math. Hungar. 107 (2005), no. 4, 267–285 crossref(new window)

12.
B.-Y. Chen, Mean curvature and shape operator of isometric immersions in real-spaceforms, Glasgow Math. J. 38 (1996), no. 1, 87–97 crossref(new window)

13.
B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasg. Math. J. 41 (1999), no. 1, 33–41 crossref(new window)

14.
B.-Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Arch. Math. (Basel) 74 (2000), no. 2, 154–160 crossref(new window)

15.
B.-Y. Chen, Riemannian submanifolds, Handbook of differential geometry, Vol. I, 187–418, North-Holland, Amsterdam, 2000

16.
L. M. Fernandez and M. B. Hans-Uber, New relationships involving the mean curvature of slant submanifolds in S-space-forms, J. Korean Math. Soc. 44 (2007), no. 3, 647–659 crossref(new window)

17.
S. P. Hong, K. Matsumoto, and M. M. Tripathi, Certain basic inequalities for submanifolds of locally conformal Kaehler space forms, SUT J. Math. 41 (2005), no. 1, 75–94

18.
S. P. Hong and M. M. Tripathi, On Ricci curvature of submanifolds of generalized Sasakian space forms, Int. J. Pure Appl. Math. Sci. 2 (2005), no. 2, 173–201

19.
S. P. Hong and M. M. Tripathi, On Ricci curvature of submanifolds, Int. J. Pure Appl. Math. Sci. 2 (2005), no. 2, 227–245

20.
S. P. Hong and M. M. Tripathi, Ricci curvature of submanifolds of a Sasakian space form, Iranian J. Math. Sci. Inform. 1 (2006), no. 2, 31–51

21.
T. Kashiwada, On a Riemannian manifold admitting a framed f - 3-structure, Natur. Sci. Rep. Ochanomizu Univ. 22 (1971), 91–99

22.
J.-S. Kim, M. K. Dwivedi, and M. M. Tripathi, Ricci curvature of integral submanifolds of an S-space form, Bull. Korean Math. Soc. 44 (2007), no. 3, 395–406 crossref(new window)

23.
M. Kobayashi, Semi-invariant submanifolds in an f-manifold with complemented frames, Tensor (N.S.) 49 (1990), no. 2, 154–177

24.
M. Kobayashi and S. Tsuchiya, Invariant submanifolds of an f-manifold with complemented frames, Kodai Math. Sem. Rep. 24 (1972), 430–450 crossref(new window)

25.
I. Mihai, CR-submanifolds of a framed f-manifold, Stud. Cerc. Mat. 35 (1983), no. 2, 127–136

26.
I. Mihai, Ricci curvature of submanifolds in Sasakian space forms, J. Aust. Math. Soc. 72 (2002), no. 2, 247–256

27.
H. Nakagawa, On framed f-manifolds, Kodai Math. Sem. Rep. 18 (1966), 293–306 crossref(new window)

28.
B. Suceava, Some remarks on B.-Y. Chen's inequality involving classical invariants, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 45 (1999), no. 2, 405–412

29.
M. M. Tripathi, On almost semi-invariant submanifolds, Ph. D. Thesis, Lucknow University, India, 1996

30.
M. M. Tripathi, Certain basic inequalities for submanifolds, Proceedings of the Tenth International Workshop on Differential Geometry, 99–145, Kyungpook Nat. Univ., Taegu, 2006

31.
M. M. Tripathi, J.-S. Kim, and S. B. Kim, Mean curvature and shape operator of slant immersions in a Sasakian space form, Balkan J. Geom. Appl. 7 (2002), no. 1, 101–111

32.
M. M. Tripathi and I. Mihai, Submanifolds of framed metric manifolds and S-manifolds, Note Mat. 20 (2000/01), no. 2, 135–164

33.
M. M. Tripathi and K. D. Singh, Almost semi-invariant submanifolds of an $\epsilon$ -framed metric manifold, Demonstratio Math. 29 (1996), no. 2, 413–426

34.
M. M. Tripathi and K. D. Singh, On submanifolds of S-manifolds, Ganita 47 (1996), no. 2, 51–54

35.
J. Vanzura, Almost r-contact structures, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 97–115

36.
K. Yano and M. Kon, Structures on Manifolds, Series in Pure Mathematics, 3. World Scientific Publishing Co., Singapore, 1984