JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE DECOMPOSITION OF EXTENDING LIFTING MODULES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE DECOMPOSITION OF EXTENDING LIFTING MODULES
Chang, Chae-Hoon; Shin, Jong-Moon;
  PDF(new window)
 Abstract
In 1984, Oshiro [11] has studied the decomposition of continuous lifting modules. He obtained the following: every continuous lifting module has an indecomposable decomposition. In this paper, we study extending lifting modules. We show that every extending lifting module has an indecomposable decomposition. This result is an expansion of Oshiro`s result mentioned above. And we consider some application of this result.
 Keywords
local summand;extending module;lifting module;(internal) exchange property;local endomorphism ring;
 Language
English
 Cited by
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York, 1992

2.
Y. Baba and M. Harada, On almost M-projectives and almost M-injectives, Tsukuba J. Math. 14 (1990), no. 1, 53–69.

3.
C. Chang, X-lifting modules over right perfect rings, Bull. Korean Math. Soc. 45 (2008), no. 1, 59-66. crossref(new window)

4.
J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, Lifting Modules, Supplements and projectivity in module theory. Frontiers in Mathematics. Birkhauser Verlag, Basel, 2006

5.
N. Er, Infinite direct sums of lifting modules, Comm. Algebra 34 (2006), no. 5, 1909-1920 crossref(new window)

6.
Y. Kuratomi, On direct sums of lifting modules and internal exchange property, Comm. Algebra 33 (2005), no. 6, 1795-1804 crossref(new window)

7.
Y. Kuratomi and C. Chang, Lifting modules over right perfect rings, Comm. Algebra 35 (2007), no. 10, 3103-3109 crossref(new window)

8.
S. H. Mohamed and B. J. Muller, Continuous and Discrete Modules, Cambridge University Press, Cambridge, 1990

9.
S. H. Mohamed and B. J. Muller, The exchange property for quasi-continuous modules, Ring theory (Granville, OH, 1992), 242-247, World Sci. Publ., River Edge, NJ, 1993

10.
S. H. Mohamed and B. J. Muller, Ojective modules, Comm. Algebra 30 (2002), no. 4, 1817-1827 crossref(new window)

11.
K. Oshiro, Lifting modules, extending modules and their applications to QF-rings, Hokkaido Math. J. 13 (1984), no. 3, 310-338 crossref(new window)

12.
K. Oshiro, Semiperfect modules and quasisemiperfect modules, Osaka J. Math. 20 (1983), no. 2, 337-372

13.
R. B. Warfield, A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1969), 460-465 crossref(new window)