JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE GAUSS MAP OF SURFACES OF REVOLUTION WITHOUT PARABOLIC POINTS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE GAUSS MAP OF SURFACES OF REVOLUTION WITHOUT PARABOLIC POINTS
Kim, Young-Ho; Lee, Chul-Woo; Yoon, Dae-Won;
  PDF(new window)
 Abstract
In this article, we study surfaces of revolution without parabolic points in a Euclidean 3-space whose Gauss map G satisfies the condition ${\Delta}^hG\;
 Keywords
Gauss map;surface of revolution;Laplace operator;second fundamental form;
 Language
English
 Cited by
1.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C),;;

대한수학회보, 2013. vol.50. 4, pp.1061-1067 crossref(new window)
1.
SURFACES OF REVOLUTION SATISFYING ΔIIG = f(G + C), Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1061  crossref(new windwow)
2.
On the Gauss Map of Surfaces of Revolution with Lightlike Axis in Minkowski 3-Space, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
3.
Classification of rotational surfaces in pseudo-Galilean space, Glasnik Matematicki, 2015, 50, 2, 453  crossref(new windwow)
4.
SURFACES OF REVOLUTION WITH LIGHT-LIKE AXIS, Journal of the Chungcheong Mathematical Society , 2012, 25, 4, 677  crossref(new windwow)
 References
1.
R. Aiyama, On the Gauss map of complete space-like hypersurfaces of constant mean curvature in Minkowski space, Tsukuba J. Math. 16 (1992), no. 2, 353-361 crossref(new window)

2.
L. J. Alias, A. Ferr´andez, P. Lucas, and M. A. Mero.no, On the Gauss map of B-scrolls, Tsukuba J. Math. 22 (1998), no. 2, 371-377 crossref(new window)

3.
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355-359 crossref(new window)

4.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2(16) (1993), 31-42

5.
C. Baikoussis and L. Verstraelen, The Chen-type of the spiral surfaces, Results Math. 28 (1995), no. 3-4, 214-223 crossref(new window)

6.
B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math. 22 (1996), no. 2, 117-337

7.
S. M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 351-367 crossref(new window)

8.
S. M. Choi, On the Gauss map of ruled surfaces in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), no. 2, 285–304

9.
F. Dillen, J. Pas, and L. Verstralen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sinica 18 (1990), no. 3, 239-246

10.
D.-S. Kim, Y. H. Kim, and D. W. Yoon, Extended B-scrolls and their Gauss maps, Indian J. Pure Appl. Math. 33 (2002), no. 7, 1031-1040

11.
Y. H. Kim and D. W. Yoon, Classifications of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc. 41 (2004), no. 2, 379-396 crossref(new window)

12.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191-205 crossref(new window)

13.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555-1581 crossref(new window)

14.
E. A. Ruh and J. Vilms, The tension field of the Gauss map, Trans. Amer. Math. Soc. 149 (1970), 569-573 crossref(new window)

15.
D. W. Yoon, On the Gauss map of translation surfaces in Minkowski 3-space, Taiwanese J. Math. 6 (2002), no. 3, 389-398 crossref(new window)

16.
D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure Appl. Math. 32 (2001), no. 12, 1803-1808