JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SENSITIVITY ANALYSIS FOR A SYSTEM OF GENERALIZED NONLINEAR MIXED QUASI-VARIATIONAL INCLUSIONS WITH (A, η)-ACCRETIVE MAPPINGS IN BANACH SPACES
Jeong, Jae-Ug; Kim, Soo-Hwan;
  PDF(new window)
 Abstract
In this paper, we study the behavior and sensitivity analysis of the solution set for a new system of parametric generalized nonlinear mixed quasi-variational inclusions with (A, )-accretive mappings in quniformly smooth Banach spaces. The present results improve and extend many known results in the literature.
 Keywords
quasi-variational inclusion;sensitivity analysis;resolvent operator;(A,)-accretive mapping;
 Language
English
 Cited by
 References
1.
R. P. Agarwal, N. J. Huang, and M. Y. Tan, Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions, Appl. Math. Lett. 17 (2004), 345-352 crossref(new window)

2.
S. Dafermos, Sensitivity analysis in variational inequalities, Math. Operat. Res. 13 (1988), 421-434 crossref(new window)

3.
Y. P. Fang and N. J. Huang, H-monotone operator and resolvent operator technique for variational inclusions, Appl. Math. Comput. 145 (2003), 795-803 crossref(new window)

4.
Y. P. Fang and N. J. Huang, H-accretive operators and resolvent operator technique for solving variational inclusions in Banach spaces, Appl. Math. Lett. 17 (2004), 647-653 crossref(new window)

5.
H. Y. Lan, Y. J. Cho, and R. U. Verma, On nonlinear relaxed cocoercive variational inclusions involving (A, ${\eta}$)-accretive mappings in Banach spaces, Comput. Math. Appl. 51 (2006), 1529-1538 crossref(new window)

6.
R. N. Mukherjee and H. L. Verma, Sensitivity analysis of generalized variational inequalities, J. Math. Anal. Appl. 167 (1992), 299-304 crossref(new window)

7.
M. A. Noor, Generalized algorithm and sensitivity analysis for variational inequalities, J. Appl. Math. Stoch. Anal. 5 (1992), 29-42 crossref(new window)

8.
Y. H. Pan, Sensitivity analysis for general quasi-variational inequalities, J. Sichuan Normal Univ. 19 (1996), 56-59

9.
J. W. Peng, On a new system of generalized mixed quasi-variational-like inclusions with (H, ${\eta}$)-accretive operators in real q-uniformly smooth Banach spaces, Nonlinear Anal. 68 (2008), 981-993 crossref(new window)

10.
J. W. Peng and D. L. Zhu, Three-step iterative algorithm for a system of set-valued variational inclusions with (H, ${\eta}$)-monotone operators, Nonlinear Anal. 68 (2008), 139-153 crossref(new window)

11.
R. U. Verma, A-monotonicity and applications to nonlinear variational inclusions, J. Appl. Math. Stoch. Anal. 17 (2004), no. 2, 193-195

12.
H. K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. 16 (1991), no. 12, 1127-1138 crossref(new window)

13.
N. D. Yen, Lipschitz continuity of solution of variational inequalities with a parametric polyhedral constraint, Math. Operat. Res. 20 (1995), 607-708 crossref(new window)

14.
D. Zeidler, Nonlinear Functional Analysis and its Applications II: Monotone Operators, Springer-Verlag, Berlin, 1985