JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A CHARACTERIZATION OF M-HARMONICITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A CHARACTERIZATION OF M-HARMONICITY
Lee, Jae-Sung;
  PDF(new window)
 Abstract
If f is M-harmonic and integrable with respect to a weighted radial measure over the unit ball of , then $\int_{B_n}(f\circ\psi)d\upsilon_{\alpha}
 Keywords
M-harmonic function;weighted Berezin transform;Gelfand transform;
 Language
English
 Cited by
 References
1.
P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. crossref(new window)

2.
S. Axler and Z. Cuckovic, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12. crossref(new window)

3.
Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1, 1), Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 671–694. crossref(new window)

4.
M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254. crossref(new window)

5.
A. Erdeli et. al., Higher Transcendental Functions Vol. I, McGraw-Hill, New York, 1953.

6.
H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. crossref(new window)

7.
A. Erdeli et. al., Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.

8.
S. Helgason, Topics in Harmonic Analysis on Homogeneous Spaces, Progress in Mathematics, 13. Birkhauser, Boston, Mass., 1981.

9.
S. Helgason, Groups and Geometric Analysis, Academic Press, 1984.

10.
Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. crossref(new window)

11.
J. Lee, Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc. 59 (1999), no. 1, 21–31. crossref(new window)

12.
W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer-Verlag, New York Inc., 1980.