1.
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhauser, Basel, 1992.
2.
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
3.
S. Hahn, Gebietsinvarianz und Eigenwertaussagen fur konzentrierende Abbildungen, Comment. Math. Univ. Carolinae 18 (1977), no. 4, 697–713.
4.
M. I. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin, 2001.
5.
I.-S. Kim, On the domain invariance of countably condensing vector fields, J. Math. Anal. Appl. 307 (2005), no. 1, 65–76.
6.
I.-S. Kim, The invariance of domain theorem for condensing vector fields, Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 363–373.
7.
T.-W. Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. Rozprawy Mat. 92 (1972), 43 pp.
8.
H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985–999.
9.
W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1–25.
10.
J. Schauder, Invarianz des Gebietes in Funktionalraumen, Studia Math. 1 (1929), 123–139.
11.
J. Schauder, Uber den Zusammenhang zwischen der Eindeutigkeit und L¨osbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Math. Ann. 106 (1932), no. 1, 661–721.
12.
M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 341–363.
13.
M. Vath, An axiomatic approach to a coincidence index for noncompact function pairs, Topol. Methods Nonlinear Anal. 16 (2000), no. 2, 307–338.
14.
M. Vath, On the connection of degree theory and 0-epi maps, J. Math. Anal. Appl. 257 (2001), no. 1, 223–237.