JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVARIANCE OF DOMAIN THEOREMS FOR CONDENSING MULTIVALUED VECTOR FIELDS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVARIANCE OF DOMAIN THEOREMS FOR CONDENSING MULTIVALUED VECTOR FIELDS
Kim, In-Sook;
  PDF(new window)
 Abstract
Using a degree theory for countably condensing multivalued maps, we show that under certain conditions an invariance of domain theorem holds for countably condensing or countably k-contractive multivalued vector fields.
 Keywords
invariance of domain;countably condensing;multivalued vector fields;degree theory;
 Language
English
 Cited by
 References
1.
R. R. Akhmerov, M. I. Kamenskii, A. S. Potapov, A. E. Rodkina, and B. N. Sadovskii, Measures of Noncompactness and Condensing Operators, Birkhauser, Basel, 1992.

2.
K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.

3.
S. Hahn, Gebietsinvarianz und Eigenwertaussagen fur konzentrierende Abbildungen, Comment. Math. Univ. Carolinae 18 (1977), no. 4, 697–713.

4.
M. I. Kamenskii, V. Obukhovskii, and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter, Berlin, 2001.

5.
I.-S. Kim, On the domain invariance of countably condensing vector fields, J. Math. Anal. Appl. 307 (2005), no. 1, 65–76. crossref(new window)

6.
I.-S. Kim, The invariance of domain theorem for condensing vector fields, Topol. Methods Nonlinear Anal. 25 (2005), no. 2, 363–373. crossref(new window)

7.
T.-W. Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. Rozprawy Mat. 92 (1972), 43 pp.

8.
H. Monch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal. 4 (1980), no. 5, 985–999. crossref(new window)

9.
W. V. Petryshyn and P. M. Fitzpatrick, A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings, Trans. Amer. Math. Soc. 194 (1974), 1–25. crossref(new window)

10.
J. Schauder, Invarianz des Gebietes in Funktionalraumen, Studia Math. 1 (1929), 123–139. crossref(new window)

11.
J. Schauder, Uber den Zusammenhang zwischen der Eindeutigkeit und L¨osbarkeit partieller Differentialgleichungen zweiter Ordnung vom elliptischen Typus, Math. Ann. 106 (1932), no. 1, 661–721. crossref(new window)

12.
M. Vath, Fixed point theorems and fixed point index for countably condensing maps, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 341–363. crossref(new window)

13.
M. Vath, An axiomatic approach to a coincidence index for noncompact function pairs, Topol. Methods Nonlinear Anal. 16 (2000), no. 2, 307–338. crossref(new window)

14.
M. Vath, On the connection of degree theory and 0-epi maps, J. Math. Anal. Appl. 257 (2001), no. 1, 223–237. crossref(new window)