JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LEFT JORDAN DERIVATIONS ON BANACH ALGEBRAS AND RELATED MAPPINGS
Jung, Yong-Soo; Park, Kyoo-Hong;
  PDF(new window)
 Abstract
In this note, we obtain range inclusion results for left Jordan derivations on Banach algebras: (i) Let be a spectrally bounded left Jordan derivation on a Banach algebra A. Then maps A into its Jacobson radical. (ii) Let be a left Jordan derivation on a unital Banach algebra A with the condition sup{r : c A invertible} < . Then maps A into its Jacobson radical. Moreover, we give an exact answer to the conjecture raised by Ashraf and Ali in [2, p. 260]: every generalized left Jordan derivation on 2-torsion free semiprime rings is a generalized left derivation.
 Keywords
(generalized) left Jordan derivation;(generalized) left derivation;derivation;spectral boundedness;Jacobson radica;
 Language
English
 Cited by
1.
A characterization of generalized Jordan derivations on Banach algebras, Periodica Mathematica Hungarica, 2014, 69, 2, 139  crossref(new windwow)
 References
1.
M. Ashraf, On Jordan left derivations of Lie ideals in prime rings, Southeast Asian Bull. Math. 25 (2001), no. 3, 379–382. crossref(new window)

2.
M. Ashraf and S. Ali, On generalized Jordan left derivations in rings, Bull. Korean Math. Soc. 45 (2008), no. 2, 253–261. crossref(new window)

3.
F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80. Springer-Verlag, New York-Heidelberg, 1973.

4.
M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003–1006. crossref(new window)

5.
M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J. 33 (1991), no. 1, 89–93. crossref(new window)

6.
M. Bresar and M. Mathieu, Derivations mapping into the radical. III, J. Funct. Anal. 133 (1995), no. 1, 21–29. crossref(new window)

7.
M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc. 110 (1990), no. 1, 7–16. crossref(new window)

8.
Q. Deng, On Jordan left derivations, Math. J. Okayama Univ. 34 (1992), 145–147

9.
M. Mathieu, Where to find the image of a derivation, Functional analysis and operator theory (Warsaw, 1992), 237–249, Banach Center Publ., 30, Polish Acad. Sci., Warsaw, 1994.

10.
M. Mathieu and G. J. Murphy, Derivations mapping into the radical, Arch. Math. (Basel) 57 (1991), no. 5, 469–474.

11.
W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. Math. 7 (2003), no. 4, 605–613.

12.
Y.-S. Jung, On left derivations and derivations of Banach algebras, Bull. Korean Math. Soc. 35 (1998), no. 4, 659–667.

13.
Y.-S. Jung, Some results on Jordan left derivations in Banach algebras, Commun. Korean Math. Soc. 14 (1999), no. 3, 513–519.

14.
I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260–264. crossref(new window)

15.
M. P. Thomas, The image of a derivation is contained in the radical, Ann. of Math. (2) 128 (1988), no. 3, 435–460. crossref(new window)

16.
M. P. Thomas, Primitive ideals and derivations on noncommutative Banach algebras, Pacific J. Math. 159 (1993), no. 1, 139–152. crossref(new window)

17.
J. Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ. 39 (1997), 1–6.

18.
J. Vukman, A note on generalized derivations of semiprime rings, Taiwanese J. Math. 11 (2007), no. 2, 367–370.

19.
J. Vukman, On left Jordan derivations of rings and Banach algebras, Aequationes Math. 75 (2008), no. 3, 260–266. crossref(new window)

20.
B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 609–614.