JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NOTES ON CRITICAL ALMOST HERMITIAN STRUCTURES
Lee, Jung-Chan; Park, Jeong-Hyeong; Sekigawa, Kouei;
  PDF(new window)
 Abstract
We discuss the critical points of the functional $F_{\lambda,\mu}(J,g)
 Keywords
critical almost Hermitian structure;Einstein-Hilbert functional;
 Language
English
 Cited by
1.
CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL FORMULA FOR THE FIRST CHERN NUMBER,;;;

대한수학회보, 2013. vol.50. 4, pp.1261-1275 crossref(new window)
1.
CRITICAL HERMITIAN STRUCTURES ON THE PRODUCT OF SASAKIAN MANIFOLDS, International Journal of Geometric Methods in Modern Physics, 2012, 09, 07, 1250055  crossref(new windwow)
2.
Some Critical Almost Hermitian Structures, Results in Mathematics, 2013, 63, 1-2, 31  crossref(new windwow)
3.
Curvature identities derived from the integral formula for the first Pontrjagin number, Differential Geometry and its Applications, 2013, 31, 4, 463  crossref(new windwow)
4.
CURVATURE IDENTITIES DERIVED FROM AN INTEGRAL FORMULA FOR THE FIRST CHERN NUMBER, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1261  crossref(new windwow)
 References
1.
D. E. Blair and S. Ianus, Critical associated metrics on symplectic manifolds, Nonlinear problems in geometry (Mobile, Ala., 1985), 23–29, Contemp. Math., 51, Amer. Math. Soc., Providence, RI, 1986. crossref(new window)

2.
A. Gray, The structure of nearly K¨ahler manifolds, Math. Ann. 223 (1976), no. 3, 233–248. crossref(new window)

3.
A. Gray, Curvature identities for Hermitian and almost Hermitian manifolds, Tohoku Math. J. (2) 28 (1976), no. 4, 601–612. crossref(new window)

4.
A. Gray and L. M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (4) 123 (1980), 35–58. crossref(new window)

5.
D. Hilbert, Die Grundlagen der Physik, Nachr. Ges. Wiss. Gott. (1915), 395–407.

6.
T. Koda, Critical almost Hermitian structures, Indian J. Pure Appl. Math. 26 (1995), no. 7, 679–690.

7.
S. Koto, Some theorems on almost Kahlerian spaces, J. Math. Soc. Japan 12 (1960), 422–433. crossref(new window)

8.
T. Oguro and K. Sekigawa, Some critical almost K¨ahler structures, Colloq. Math. 111 (2008), no. 2, 205–212. crossref(new window)

9.
T. Oguro, K. Sekigawa, and A. Yamada, Some critical almost K¨ahler structures with a fixed Kahler class, Topics in contemporary differential geometry, complex analysis and mathematical physics, 269–277, World Sci. Publ., Hackensack, NJ, 2007.

10.
K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanujan Math. Soc. 2 (1987), no. 2, 101–116.

11.
K. Sekigawa, Almost Hermitian manifolds satisfying some curvature conditions, Kodai Math. J. 2 (1979), no. 3, 384–405. crossref(new window)