JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE
Joe, Do-Sang;
  PDF(new window)
 Abstract
Let P be a Jacobian polynomial such as deg P
 Keywords
polar;class of plane curve;plane Jacobian conjecture;
 Language
English
 Cited by
 References
1.
S. S. Abhyankar, Algebraic Geometry for Scientists and Engineers, Mathematical Surveys and Monographs, 35. American Mathematical Society, Providence, RI, 1990.

2.
S. S. Abhyankar and T. Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166.

3.
E. Brieskorn and H. Knorrer, Plane Algebraic Curves, Birkhauser Verlag, Basel, 1986.

4.
N. V. Chau, Plane Jacobian polynomial for rational polynomials, preprint, arXiv: 0804.3172v2

5.
D. Cox, J. Little, and D. O'Shea, Using Algebraic Geometry, Second edition. Graduate Texts in Mathematics, 185. Springer, New York, 2005.

6.
A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Birkhauser Verlag, Basel, 2000.

7.
A. van den Essen and J. Yu, The D-resultant, singularities and the degree of unfaithfulness, Proc. Amer. Math. Soc. 125 (1997), no. 3, 689–695. crossref(new window)

8.
I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhauser Boston, Inc., Boston, MA, 1994.

9.
R. C. Heitmann, On the Jacobian conjecture, J. Pure Appl. Algebra 64 (1990), no. 1, 35–72. crossref(new window)

10.
D. Joe and H. Park, Emdeddings of line in the plane and Abhynkar-Moh epimorphism theorem, Bull. Korean. Math. Soc. 46 (2009), no. 1, 171–182. crossref(new window)

11.
T. Moh, On the Jacobian conjecture and the configurations of roots, J. Reine Angew. Math. 340 (1983), 140–212.

12.
M. Razar, Polynomial maps with constant Jacobian, Israel J. Math. 32 (1979), no. 2-3, 97–106. crossref(new window)

13.
L. D. Trang, Simple rational polynomials and the Jacobian conjecture, Publ. Res. Inst. Math. Sci. 44 (2008), no. 2, 641–659. crossref(new window)