JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THE MOTION OF POINT VORTEX DIPOLE ON THE ELLIPSOID OF REVOLUTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THE MOTION OF POINT VORTEX DIPOLE ON THE ELLIPSOID OF REVOLUTION
Kim, Sun-Chul;
  PDF(new window)
 Abstract
A pair of point vortices of the same strength but opposite sign is called a vortex dipole. We consider the limiting case where two vortices approach infinitely close while the ratio of the strength to the distance kept constant. The motion of such point vortex dipole on the ellipsoid of revolution is investigated geometrically to conclude that the trajectory draws a geodesic up to the leading order of perturbation, whose direction is determined by the initial orientation of the dipole. Related issues are also remarked.
 Keywords
point vortex;ellipsoid of revolution;perturbation expansion;geodesic;vortex dipole;
 Language
English
 Cited by
 References
1.
M. Berger, A Panoramic View of Riemannian Geometry, Springer-Verlag, Berlin, 2003.

2.
K. Burns and V. J. Donnay, Embedded surfaces with ergodic geodesic flows, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 7 (1997), no. 7, 1509–1527. crossref(new window)

3.
C. Castilho and H. Machado, The N-vortex problem on a symmetric ellipsoid: a perturbation approach, J. Math. Phys. 49 (2008), no. 2, 022703, 12 pp.

4.
M. T. Dibattista and L. M. Polvani, Barotropic vortex pairs on a rotating sphere, J. Fluid Mech. 358 (1998), 107–133.

5.
B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry-methods and applications. Part I. Second edition. Graduate Texts in Mathematics, 93. Springer-Verlag, New York, 1992.

6.
E. Hally, Stability of streets of vortices on surfaces of revolution with a reflection symmetry, J. Math. Phys. 21 (1980), no. 1, 211–217.

7.
D. Hobson, A point vortex dipole model of an isolated modon, Phys. Fluids A 3 (1991), no. 12, 3027–3033. crossref(new window)

8.
R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Phys. D 116 (1998), no. 1-2, 143–175. crossref(new window)

9.
Y. Kimura, Vortex motion on surfaces with constant curvature, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999), no. 1981, 245–259. crossref(new window)

10.
P. K. Newton, The N-Vortex Problem. Analytical Techniques, Applied Mathematical Sciences, 145. Springer-Verlag, New York, 2001.

11.
C. Snyder, D. Muraki, R. Plougonven, and F. Zhang, Inertia-Gravity waves generated within a dipole vortex, J. Atmos. Sci., to appear

12.
J. B. Weiss and J. C. McWilliams, Nonergodicity of point vortices, Phys. Fluids A 3 (1991), no. 5, part 1, 835–844. crossref(new window)