JOURNAL BROWSE
Search
Advanced SearchSearch Tips
NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS
Guo, Yingxin;
  PDF(new window)
 Abstract
In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)
 Keywords
standard Riemann-Liouville differentiation;fractional differential equation;boundary-value problem;nontrivial solution;Leray-Schauder nonlinear alternative;
 Language
English
 Cited by
1.
Limit properties of positive solutions of fractional boundary value problems, Applied Mathematics and Computation, 2012, 219, 5, 2361  crossref(new windwow)
2.
The existence of positive solutions of singular fractional boundary value problems, Computers & Mathematics with Applications, 2011, 62, 3, 1379  crossref(new windwow)
3.
Existence of solutions for nonlinear fractional q-difference equations with Riemann-Liouville type q-derivatives, Journal of Applied Mathematics and Computing, 2015, 47, 1-2, 429  crossref(new windwow)
4.
Nontrivial solutions for a fractional boundary value problem, Advances in Difference Equations, 2013, 2013, 1, 171  crossref(new windwow)
5.
Fractional boundary value problems with singularities in space variables, Nonlinear Dynamics, 2013, 71, 4, 641  crossref(new windwow)
6.
New computational techniques for solving nonlinear problems using g -fractional differential operator, Journal of Computational and Applied Mathematics, 2018, 330, 70  crossref(new windwow)
7.
Existence and uniqueness of nontrivial solutions for eigenvalue boundary value problem of nonlinear fractional differential equation, ANNALI DELL'UNIVERSITA' DI FERRARA, 2014, 60, 2, 429  crossref(new windwow)
 References
1.
O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002), no. 1, 368–379. crossref(new window)

2.
Z. Bai and H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl. 311 (2005), no. 2, 495–505. crossref(new window)

3.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

4.
D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation, J. Math. Anal. Appl. 204 (1996), no. 2, 609–625. crossref(new window)

5.
B. Liu, Positive solutions of a nonlinear three-point boundary value problem, Comput. Math. Appl. 44 (2002), no. 1-2, 201–211. crossref(new window)

6.
I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, 198. Academic Press, Inc., San Diego, CA, 1999.

7.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integral and Derivatives, Gordon and Breach, Switzerland, 1993.

8.
S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl. 252 (2000), no. 2, 804–812. crossref(new window)

9.
S. Zhang, Existence of positive solution for some class of nonlinear fractional differential equations, J. Math. Anal. Appl. 278 (2003), no. 1, 136–148. crossref(new window)