JOURNAL BROWSE
Search
Advanced SearchSearch Tips
WEAK AMENABILITY OF CONVOLUTION BANACH ALGEBRAS ON COMPACT HYPERGROUPS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
WEAK AMENABILITY OF CONVOLUTION BANACH ALGEBRAS ON COMPACT HYPERGROUPS
Samea, Hojjatollah;
  PDF(new window)
 Abstract
In this paper we find necessary and sufficient conditions for weak amenability of the convolution Banach algebras A(K) and for a compact hypergroup K, together with their applications to convolution Banach algebras (<). It will further be shown that the convolution Banach algebra A(G) for a compact group G is weakly amenable if and only if G has a closed abelian subgroup of finite index.
 Keywords
hypergroup;weak amenability;convolution Banach algebras;
 Language
English
 Cited by
 References
1.
W. R. Bloom and H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, 20. Walter de Gruyter & Co., Berlin, 1995.

2.
H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.

3.
F. Gordeau, Amenability of Lipschitz algebras, Math. Proc. Cambridge Philos. Soc. 112 (1992), no. 3, 581–588. crossref(new window)

4.
E. Hewitt and K. A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Springer-Verlag, New York-Berlin, 1970.

5.
R. I. Jewett, Spaces with an abstract convolution of measures, Advances in Math. 18 (1975), no. 1, 1–101. crossref(new window)

6.
C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. crossref(new window)

7.
V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774. Springer-Verlag, Berlin, 2002.

8.
M. Skantharajah, Amenable hypergroups, Illinois J. Math. 36 (1992), no. 1, 15–46.

9.
R. C. Vrem, Harmonic analysis on compact hypergroups, Pacific J. Math. 85 (1979), no. 1, 239–251. crossref(new window)