JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MEROMORPHIC FUNCTIONS SHARING A NONZERO POLYNOMIAL CM
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MEROMORPHIC FUNCTIONS SHARING A NONZERO POLYNOMIAL CM
Li, Xiao-Min; Gao, Ling;
  PDF(new window)
 Abstract
In this paper, we prove that if and share 0 CM, where f and g are two distinct transcendental meromorphic functions, is a positive integer, and P is a nonzero polynomial such that its degree , then either $f\;
 Keywords
meromorphic functions;shared values;differential polynomials;uniqueness theorems;
 Language
English
 Cited by
1.
Meromorphic Functions Sharing a Nonzero Polynomial IM,;

Kyungpook mathematical journal, 2013. vol.53. 2, pp.191-205 crossref(new window)
1.
Uniqueness of meromorphic functions sharing a nonzero polynomial with finite weight, Lobachevskii Journal of Mathematics, 2013, 34, 1, 106  crossref(new windwow)
2.
Uniqueness of meromorphic functions sharing two values, Journal of Inequalities and Applications, 2012, 2012, 1, 100  crossref(new windwow)
3.
Uniqueness of meromorphic functions sharing one value or fixed points, Journal of Contemporary Mathematical Analysis, 2014, 49, 6, 359  crossref(new windwow)
4.
Meromorphic Functions Sharing a Nonzero Polynomial IM, Kyungpook mathematical journal, 2013, 53, 2, 191  crossref(new windwow)
 References
1.
T. C. Alzahary and H. X. Yi, Weighted sharing three values and uniqueness of meromorphic functions, J. Math. Anal. Appl. 295 (2004), no. 1, 247–257. crossref(new window)

2.
W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11 (1995), no. 2, 355–373.

3.
W. Bergweiler and X. C. Pang, On the derivative of meromorphic functions with multiple zeros, J. Math. Anal. Appl. 278 (2003), no. 2, 285–292. crossref(new window)

4.
H. H. Chen and M. L. Fang, The value distribution of $f^n$ f', Sci. China Ser. A 38 (1995), no. 7, 789–798.

5.
M. L. Fang, A note on a problem of Hayman, Analysis (Munich) 20 (2000), no. 1, 45–49.

6.
M. L. Fang and H. L. Qiu, Meromorphic functions that share fixed-points, J. Math. Anal. Appl. 268 (2002), no. 2, 426–439. crossref(new window)

7.
W. K. Hayman, Meromorphic Functions, The Clarendon Press,Oxford, 1964.

8.
W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9–42. crossref(new window)

9.
I. Lahiri and A. Sarkar, Uniqueness of a meromorphic function and its derivative, JIPAM. J. Inequal. Pure Appl. Math. 5 (2004), no. 1, Article 20, 9 pp.

10.
I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993.

11.
A. Z. Mokhonko, On the Nevanlinna characteristics of some meromorphic functions, Theory of Functions, Functional Analysis and Their Applications, vol.14, Izd-vo Khar’kovsk. Un-ta, 1971, pp. 83–87.

12.
E. Mues, Meromorphic functions sharing four values, Complex Variables Theory Appl. 12 (1989), no. 1-4, 169–179. crossref(new window)

13.
R. Nevanlinna, Einige Eindeutigkeitssatze in der Theorie der Meromorphen Funktionen, Acta Math. 48 (1926), no. 3-4, 367–391. crossref(new window)

14.
C. C. Yang, On deficiencies of differential polynomials. II, Math. Z. 125 (1972), 107– 112. crossref(new window)

15.
C. C. Yang and X. H. Hua, Uniqueness and value-sharing of meromorphic functions, Ann. Acad. Sci. Fenn. Math. 22 (1997), no. 2, 395–406.

16.
C. C. Yang and H. X. Yi, Uniqueness Theory of Meromorphic Functions, Kluwer Academic Publishers, Dordrecht/Boston/London, 2003.

17.
L. Yang, Value Distribution Theory, Springer-Verlag, Berlin Heidelberg, 1993.

18.
L. Yang, Normality for families of meromorphic functions, Sci. Sinica Ser. A 29 (1986), no. 12, 1263–1274.

19.
L. Zalcman, On some problems of Hayman, Preprint (Bar-Ilan University), 1995.

20.
Q. C. Zhang, Meromorphic functions sharing three values, Indian J. Pure Appl. Math. 30 (1999), no. 7, 667–682.