JOURNAL BROWSE
Search
Advanced SearchSearch Tips
REMARKS ON THE GAP SET OF R
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
REMARKS ON THE GAP SET OF R
Tutas, Nesrin;
  PDF(new window)
 Abstract
, a new generalization of the set of gap numbers of a pair of points, was described in [1]. Here we study gap numbers of local subring $R\;
 Keywords
Weierstrass points;gap numbers;
 Language
English
 Cited by
 References
1.
P. Beelen and N. Tutas, A generalization of the Weierstrass semigroup, J. Pure Appl. Algebra 207 (2006), no. 2, 243–260. crossref(new window)

2.
A. Garcia and P. Viana, Weierstrass points on certain nonclassical curves, Arch. Math. (Basel) 46 (1986), no. 4, 315–322. crossref(new window)

3.
M. Homma, The Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 67 (1996), no. 4, 337–348. crossref(new window)

4.
E. Kang and S. J. Kim, Special pairs in the generating subset of the Weierstrass semigroup at a pair, Geom. Dedicata 99 (2003), 167–177. crossref(new window)

5.
H. I. Karakas, On Rosenlicht's generalization of Riemann-Roch theorem and generalized Weierstrass points, Arch. Math. (Basel) 27 (1976), no. 2, 134–147. crossref(new window)

6.
H. I. Karakas, Application of generalized Weierstrass points: divisibility of divisor classes, J. Reine Angew. Math. 299/300 (1978), 388–395.

7.
S. J. Kim, On the index of the Weierstrass semigroup of a pair of points on a curve, Arch. Math. (Basel) 62 (1994), no. 1, 73–82. crossref(new window)

8.
G. Matthews, Weierstrass pairs and minimum distance of Goppa codes, Des. Codes Cryptogr. 22 (2001), no. 2, 107–121. crossref(new window)

9.
G. Matthews, Codes from the Suzuki function field, IEEE Trans. Inform. Theory 50 (2004), no. 12, 3298–3302. crossref(new window)

10.
M. Rosenlicht, Equivalence relations on algebraic curves, Ann. of Math. (2) 56 (1952), 169–191. crossref(new window)

11.
H. Stichtenoth, Algebraic Function Fields and Codes, Springer-Verlag, Berlin, 1993.

12.
N. Tuta¸s, On Weierstrass point of semilocal subrings, JP J. Algebra Number Theory Appl. 13 (2009), no. 2, 221–235.