JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MEAN CONVERGENCE THEOREMS AND WEAK LAWS OF LARGE NUMBERS FOR DOUBLE ARRAYS OF RANDOM ELEMENTS IN BANACH SPACES
Dung, Le Van; Tien, Nguyen Duy;
  PDF(new window)
 Abstract
For a double array of random elements {} in a real separable Banach space, some mean convergence theorems and weak laws of large numbers are established. For the mean convergence results, conditions are provided under which $k_{mn}^{-\frac{1}{r}}\sum{{u_m}\atop{i
 Keywords
martingale type p Banach spaces;double arrays of random elements;weighted double sums;weak laws of large numbers;mean convergence theorem;
 Language
English
 Cited by
1.
CONVERGENCE OF DOUBLE SERIES OF RANDOM ELEMENTS IN BANACH SPACES,;;

대한수학회지, 2012. vol.49. 5, pp.1053-1064 crossref(new window)
1.
A new family of convex weakly compact valued random variables in Banach space and applications to laws of large numbers, Statistics & Probability Letters, 2012, 82, 1, 84  crossref(new windwow)
 References
1.
A. Adler, A. Rosalsky, and A. I. Volodin, A mean convergence theorem and weak law for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett. 32 (1997), no. 2, 167-174. crossref(new window)

2.
T. K. Chandra, Uniform integrability in the Cesaro sense and the weak law of large numbers, SankhyaSer. A 51 (1989), no. 3, 309-317.

3.
J. Hoffmann-Jorgensen and G. Pisier, The law of large numbers and the central limit theorem in Banach spaces, Ann. Probability 4 (1976), no. 4, 587-599. crossref(new window)

4.
D. Landers and L. Rogge, Laws of large numbers for pairwise independent uniformly integrable random variables, Math. Nachr. 130 (1987), 189-192. crossref(new window)

5.
M. Ordonez Cabrera, Convergence of weighted sums of random variables and uniform integrability concerning the weights, Collect. Math. 45 (1994), no. 2, 121-132.

6.
G. Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326-350. crossref(new window)

7.
G. Pisier, Probabilistic methods in the geometry of Banach spaces, Probability and analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986. crossref(new window)

8.
F. S. Scalora, Abstract martingale convergence theorems, Pacific J. Math. 11 (1961), 347-374. crossref(new window)

9.
S. H. Sung, Weak law of large numbers for arrays of random variables, Statist. Probab. Lett. 42 (1999), no. 3, 293-298. crossref(new window)

10.
L. V. Thanh, Mean convergence theorems and weak laws of large numbers for double arrays of random variables, J. Appl. Math. Stoch. Anal. 2006 (2006), Art. ID 49561, 15 pp.