1.
J. Aczel and J. Dhombres, Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
2.
L. Cadariu, Fixed points in generalized metric space and the stability of a quartic functional equation, Bul. Stiint. Univ. Politeh. Timis. Ser. Mat. Fiz. 50(64) (2005), no. 2, 25-34.
3.
P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86.
4.
J. K. Chung and P. K. Sahoo, On the general solution of a quartic functional equation, Bull. Korean Math. Soc. 40 (2003), no. 4, 565-576.
5.
M. Eshaghi-Gordji, A. Ebadian, and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008), Article ID 801904, 17 pages.
6.
M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, M. S. Moslehian, and S. Zolfaghari, Stability of a mixed type additive, quadratic, cubic and quartic functional equation, To appear.
7.
M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park, and S. Zolfaghari, Stability of an additive-cubic-quartic functional equation, Submitted.
8.
M. Eshaghi-Gordji, C. Park, and M. Bavand-Savadkouhi, Stability of a quartic type functional equation, Submitted.
9.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434.
10.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.
11.
A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217-235.
12.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser Boston, Inc., Boston, MA, 1998.
13.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
14.
G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of
${\psi}$-additive mappings, J. Approx. Theory 72 (1993), no. 2, 131-137.
15.
G. Isac and Th. M. Rassias, Stability of
${\psi}$-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci. 19 (1996), no. 2, 219-228.
16.
S. H. Lee, S. M. Im, and I. S. Hwang, Quartic functional equations, J. Math. Anal. Appl. 307 (2005), no. 2, 387-394.
17.
A. Najati, On the stability of a quartic functional equation, J. Math. Anal. Appl. 340 (2008), no. 1, 569-574.
18.
C. G. Park, On the stability of the orthogonally quartic functional equation, Bull. Iranian Math. Soc. 31 (2005), no. 1, 63-70.
19.
W. G. Park and J. H. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal. 62 (2005), no. 4, 643-654.
20.
J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.) 67 (2000), no. 1-4, 169-178.
21.
J. M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), no. 2, 243-252.
22.
Th. M. Rassias, Functional Equations and Inequalities, Mathematics and its Applications, 518. Kluwer Academic Publishers, Dordrecht, 2000.
23.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130.
24.
Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284.
25.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.
26.
K. Ravi and M. Arunkumar, Hyers-Ulam-Rassias stability of a quartic functional equation, Int. J. Pure Appl. Math. 34 (2007), no. 2, 247-260.
27.
E. Thandapani, K. Ravi, and M. Arunkumar, On the solution of the generalized quartic functional equation, Far East J. Appl. Math. 24 (2006), no. 3, 297-312.
28.
S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964.