JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A WEIGHTED COMPOSITION OPERATOR ON THE LOGARITHMIC BLOCH SPACE
Ye, Shanli;
  PDF(new window)
 Abstract
We characterize the boundedness and compactness of the weighted composition operator on the logarithmic Bloch space $\mathcal{L}\ss
 Keywords
logarithmic Bloch space;weighted composition operator;boundedness;compactness;
 Language
English
 Cited by
1.
On a Stević-Sharma operator from Hardy spaces to the logarithmic Bloch spaces, Journal of Inequalities and Applications, 2015, 2015, 1  crossref(new windwow)
2.
Weighted Composition Operators on the Zygmund Space, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
3.
Logarithmic Bloch spaces and their weighted composition operators, Rendiconti del Circolo Matematico di Palermo (1952 -), 2016, 65, 1, 159  crossref(new windwow)
4.
Weighted Composition Operators from Hardy Spaces into Logarithmic Bloch Spaces, Journal of Function Spaces and Applications, 2012, 2012, 1  crossref(new windwow)
5.
Weighted Composition Operators from Hardy to Zygmund Type Spaces, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
6.
Norm and Essential Norm of Composition Followed by Differentiation from Logarithmic Bloch Spaces to Hμ∞, Abstract and Applied Analysis, 2014, 2014, 1  crossref(new windwow)
 References
1.
L. Brown and A. L. Shields, Multipliers and cyclic vectors in the Bloch space, Michigan Math. J. 38 (1991), no. 1, 141-146. crossref(new window)

2.
C. C. Cowen and B. D. Maccluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.

3.
K. Madigan, Composition operators on analytic Lipschitz spaces, Proc. Amer. Math. Soc. 119 (1993), no. 2, 465-473. crossref(new window)

4.
K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2679-2687. crossref(new window)

5.
S. Ohno, K. Stroethoff, and R. H. Zhao, Weighted composition operators between Blochtype spaces, Rocky Mountain J. Math. 33 (2003), no. 1, 191-215. crossref(new window)

6.
S. Ohno and R. H. Zhao, Weighted composition operators on the Bloch space, Bull. Austral. Math. Soc. 63 (2001), no. 2, 177-185. crossref(new window)

7.
J. H. Shapiro, Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer-Verlag, New York, 1993.

8.
W. Smith, Composition operators between Bergman and Hardy spaces, Trans. Amer. Math. Soc. 348 (1996), no. 6, 2331-2348. crossref(new window)

9.
K. Stroethoff, Besov-type characterisations for the Bloch space, Bull. Austral. Math. Soc. 39 (1989), no. 3, 405-420. crossref(new window)

10.
S. L. Ye, Multipliers and cyclic vectors on the weighted Bloch space, Math. J. Okayama Univ. 48 (2006), 135-143.

11.
S. L. Ye, Weighted composition operators from F(p, q, s) into logarithmic Bloch space, J. Korean Math. Soc. 45 (2008), no. 4, 977-991. crossref(new window)

12.
R. Yoneda, The composition operators on weighted Bloch space, Arch. Math. (Basel) 78 (2002), no. 4, 310-317. crossref(new window)

13.
R. Zhao, Composition operators from Bloch type spaces to Hardy and Besov spaces, J. Math. Anal. Appl. 233 (1999), no. 2, 749-766. crossref(new window)

14.
K. H. Zhu, Bloch type spaces of analytic functions, Rocky Mountain J. Math. 23 (1993), no. 3, 1143-1177. crossref(new window)

15.
K. H. Zhu, Operator Theory in Function Spaces, Monographs and Textbooks in Pure and Applied Mathematics, 139. Marcel Dekker, Inc., New York, 1990.