JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON A POSITIVE SUBHARMONIC BERGMAN FUNCTION
Kim, Jung-Ok; Kwon, Ern-Gun;
  PDF(new window)
 Abstract
A holomorphic function F defined on the unit disc belongs to (0 < p < , 1 < < ) if dxdy < . For boundedness of the composition operator defined by $C_{fg}
 Keywords
composition operator;Bloch space;weighted Bergman space;
 Language
English
 Cited by
 References
1.
P. L. Duren, Theory of $H^p$ spaces, Academic Press, New York, 1970.

2.
J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.

3.
E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1473-1480. crossref(new window)

4.
E. G. Kwon, On analytic functions of Bergman BMO in the ball, Canad. Math. Bull. 42 (1999), no. 1, 97-103. crossref(new window)

5.
E. G. Kwon and J. K. Lee, Norm of a composition operator on the Bloch space, Preprint.

6.
W. Ramey and D. Ullrich, Bounded mean oscillation of Bloch pull-backs, Math. Ann. 291 (1991), no. 4, 591-606. crossref(new window)

7.
A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley & Sons, New York-Chichester-Brisbane, 1980.

8.
S. Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet-finite functions, Hokkaido Math. J. 10 (1981), Special Issue, 709-722.