JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MODULE EXTENSION OF DUAL BANACH ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MODULE EXTENSION OF DUAL BANACH ALGEBRAS
Gordji, Madjid Eshaghi; Habibian, Fereydoun; Rejali, Ali;
  PDF(new window)
 Abstract
This work was intended as an attempt to introduce and investigate the Connes-amenability of module extension of dual Banach algebras. It is natural to try to study the -continuous derivations on the module extension of dual Banach algebras and also the weak Connes-amenability of such Banach algebras.
 Keywords
derivation;Connes-amenable;
 Language
English
 Cited by
1.
Arens regularity of module actions and weak amenability of Banach algebras, Periodica Mathematica Hungarica, 2015, 71, 2, 224  crossref(new windwow)
 References
1.
A. Connes, Classification of injective factors. Cases $II_1,\;II_{\infty},\;III_{\lamda},\;{\lamda}\;{\neg}\;1$, Ann. of Math. (2) 104 (1976), no. 1, 73–115. crossref(new window)

2.
A. Connes, On the cohomology of operator algebras, J. Functional Analysis 28 (1978), no. 2, 248–253. crossref(new window)

3.
H. G. Dales, Banach Algebras and Automatic Continuity, London Mathematical Society Monographs. New Series, 24. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 2000.

4.
M. Eshaghi Gordji, Left introverted subspaces of duals of Banach algebras and $weak^{\ast}$ - continuous derivations on dual Banach algebras, Submitted.

5.
U. Haagerup, All nuclear $C^{\ast}-algebras$ are amenable, Invent. Math. 74 (1983), no. 2, 305–319. crossref(new window)

6.
B. E. Johnson, Cohomology in Banach Algebras, Memoirs of the American Mathematical Society, No. 127. American Mathematical Society, Providence, R.I., 1972.

7.
B. E. Johnson, R. V. Kadison, and J. Ringrose, Cohomology of operator algebras. III. Reduction to normal cohomology, Bull. Soc. Math. France 100 (1972), 73–96.

8.
V. Runde, Amenability for dual Banach algebras, Studia Math. 148 (2001), no. 1, 47–66. crossref(new window)

9.
V. Runde, Lectures on Amenability, Springer-Verlage, Berlin, Hedinberg, New York, 2002.

10.
W. Rudin, Functional Analysis: second edition, Mcgraw-Hill, 1991.

11.
S.Wassermann, On tensor products of certain group $C^{\ast}-algebras$, J. Functional Analysis 23 (1976), no. 3, 239–254. crossref(new window)

12.
Y. Zhang, Weak amenability of module extensions of Banach algebras, Trans. Amer. Math. Soc. 354 (2002), no. 10, 4131–4151. crossref(new window)