JOURNAL BROWSE
Search
Advanced SearchSearch Tips
INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
INVERSE POLYNOMIAL MODULES INDUCED BY AN R-LINEAR MAP
Park, Sang-Won; Jeong, Jin-Sun;
  PDF(new window)
 Abstract
In this paper we show that the flat property of a left R-module does not imply (carry over) to the corresponding inverse polynomial module. Then we define an induced inverse polynomial module as an R[x]-module, i.e., given an R-linear map f : M N of left R-modules, we define as a left R[x]-module. Given an exact sequence of left R-modules , where , injective, we show is not an injective left R[x]-module, while is an injective left R[x]-module. Make a left R-module N as a left R[x]-module by xN = 0. We show inj N = n implies inj N = n + 1 by using the induced inverse polynomial modules and their properties.
 Keywords
flat module;injective module;inverse polynomial module;induced module;
 Language
English
 Cited by
1.
PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID,;;

Korean Journal of Mathematics, 2012. vol.20. 3, pp.307-314 crossref(new window)
1.
PROPERTIES OF INDUCED INVERSE POLYNOMIAL MODULES OVER A SUBMONOID, Korean Journal of Mathematics, 2012, 20, 3, 307  crossref(new windwow)
 References
1.
Z. Liu, Injectivity of modules of generalized inverse polynomials, Comm. Algebra 29 (2001), no. 2, 583–592. crossref(new window)

2.
A. S. McKerrow, On the injective dimension of modules of power series, Quart. J. Math. Oxford Ser. (2) 25 (1974), 359–368. crossref(new window)

3.
D. G. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. (2) 8 (1974), 290–296. crossref(new window)

4.
S. Park, Inverse polynomials and injective covers, Comm. Algebra 21 (1993), no. 12, 4599–4613. crossref(new window)

5.
S. Park, The Macaulay-Northcott functor, Arch. Math. (Basel) 63 (1994), no. 3, 225–230. crossref(new window)

6.
S. Park, Gorenstein rings and inverse polynomials, Comm. Algebra 28 (2000), no. 2, 785–789. crossref(new window)

7.
S. Park, The general structure of inverse polynomial modules, Czechoslovak Math. J. 51(126) (2001), no. 2, 343–349. crossref(new window)

8.
S. Park and E. Cho, Injective and projective properties of $R[{\chi}]-modules$, Czechoslovak Math. J. 54(129) (2004), no. 3, 573–578. crossref(new window)