JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON FULLY IDEMPOTENT RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON FULLY IDEMPOTENT RINGS
Jeon, Young-Cheol; Kim, Nam-Kyun; Lee, Yang;
  PDF(new window)
 Abstract
We continue the study of fully idempotent rings initiated by Courter. It is shown that a (semi)prime ring, but not fully idempotent, can be always constructed from any (semi)prime ring. It is shown that the full idempotence is both Morita invariant and a hereditary radical property, obtaining $hs(Mat_n(R))\;
 Keywords
fully idempotent ring;(weakly) regular ring;hereditary radical;classical quotient ring;
 Language
English
 Cited by
 References
1.
A. W. Chatters and C. R. Hajarnavis, Rings with Chain Conditions, Research Notes in Mathematics, 44. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980.

2.
R. C. Courter, Rings all of whose factor rings are semi-prime, Canad. Math. Bull. 12 (1969), 417–426. crossref(new window)

3.
R. C. Courter, Fully idempotent rings have regular centroids, Proc. Amer. Math. Soc. 43 (1974), 293–296. crossref(new window)

4.
K. R. Goodearl, Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4. Pitman (Advanced Publishing Program), Boston, Mass.-London, 1979.

5.
C. Y. Hong, Y. C. Jeon, K. H. Kim, N. K. Kim, and Y. Lee, Weakly regular rings with ACC on annihilators and maximality of strongly prime ideals of weakly regular rings, J. Pure Appl. Algebra 207 (2006), no. 3, 565–574. crossref(new window)

6.
C. Huh, S. H. Jang, C. O. Kim, and Y. Lee, Rings whose maximal one-sided ideals are two-sided, Bull. Korean Math. Soc. 39 (2002), no. 3, 411–422.

7.
S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186–199. crossref(new window)

8.
Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135–146. crossref(new window)

9.
T. Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, 189. Springer-Verlag, New York, 1999.

10.
T. Y. Lam, Exercises in Classical Ring Theory, Problem Books in Mathematics. Springer- Verlag, New York, 1995.

11.
V. S. Ramamurthi, Weakly regular rings, Canad. Math. Bull. 16 (1973), 317–321. crossref(new window)

12.
E. S¸asida and P. Cohn, An example of a simple radical ring, J. Algebra 5 (1967), 373–377. crossref(new window)

13.
A. Smoktunowicz, A simple nil ring exists, Comm. Algebra 30 (2002), no. 1, 27–59. crossref(new window)

14.
X. Yao, Weakly right duo rings, Pure Appl. Math. Sci. 21 (1985), no. 1-2, 19–24.