JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STABILITY OF THE MONOMIAL FUNCTIONAL EQUATION IN QUASI NORMED SPACES
Mirmostafaee, Alireza Kamel;
  PDF(new window)
 Abstract
Let X be a linear space and Y be a complete quasi p-norm space. We will show that for each function f : X Y, which satisfies the inequality for suitable control function , there is a unique monomial function M of degree n which is a good approximation for f in such a way that the continuity of and imply the continuity of .
 Keywords
quasi p-norm;monomial functional equation;fixed point alternative;Hyers-Ulam-Rassias stability;
 Language
English
 Cited by
1.
Recursive procedure in the stability of Fréchet polynomials, Advances in Difference Equations, 2014, 2014, 1, 16  crossref(new windwow)
 References
1.
M. Albert and J. A. Baker, Functions with bounded nth differences, Ann. Polon. Math. 43 (1983), no. 1, 93–103. crossref(new window)

2.
T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588–594. crossref(new window)

3.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66. crossref(new window)

4.
Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000.

5.
D. G. Bourgin, Classes of transformations and bordering transformations, Bull. Amer. Math. Soc. 57 (1951), 223–237. crossref(new window)

6.
L. Cadariu and V. Radu, Remarks on the stability of monomial functional equations, Fixed Point Theory 8 (2007), no. 2, 201–218.

7.
J. B. Diaz and B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305–309. crossref(new window)

8.
A. Gilanyi, Hyers-Ulam stability of monomial functional equations on a general domain, Proc. Natl. Acad. Sci. USA 96 (1999), no. 19, 10588–10590. crossref(new window)

9.
A. Gilanyi, On the stability of monomial functional equations, Publ. Math. Debrecen 56 (2000), no. 1-2, 201–212.

10.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA 27 (1941), 222–224. crossref(new window)

11.
D. H. Hyers, Transformations with bounded mth differences, Pacific J. Math. 11 (1961), 591–602. crossref(new window)

12.
S.-M. Jung, T.-S. Kim, and K.-S. Lee, A fixed point approach to the stability of quadratic functional equation, Bull. Korean Math. Soc. 43 (2006), no. 3, 531–541. crossref(new window)

13.
Z. Kaiser, On stability of the monomial functional equation in normed spaces over fields with valuation, J. Math. Anal. Appl. 322 (2006), no. 2, 1188–1198. crossref(new window)

14.
Y.-H. Lee, On the stability of the monomial functional equation, Bull. Korean Math. Soc. 45 (2008), no. 2, 397–403. crossref(new window)

15.
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91–96.

16.
J. M. Rassias, Alternative contraction principle and Ulam stability problem, Math. Sci. Res. J. 9 (2005), no. 7, 190–199.

17.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300. crossref(new window)

18.
S. M. Ulam, Problems in Modern Mathematics, Science Editions John Wiley & Sons, Inc., New York 1964.

19.
D. Wolna, The stability of monomial functions on a restricted domain, Aequationes Math. 72 (2006), no. 1-2, 100–109. crossref(new window)