EXISTENCE RESULTS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH SEPARATED BOUNDARY CONDITIONS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 47, Issue 4, 2010, pp.805-813
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2010.47.4.805

Title & Authors

EXISTENCE RESULTS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH SEPARATED BOUNDARY CONDITIONS

Ahmad, Bashir;

Ahmad, Bashir;

Abstract

In this paper, we apply Bohnenblust-Karlins fixed point theorem to prove the existence of solutions for a class of fractional differential inclusions with separated boundary conditions. Some applications of the main result are also presented.

Keywords

fractional differential inclusions;separated boundary conditions;Bohnenblust-Karlins fixed point theorem;

Language

English

Cited by

1.

2.

3.

4.

5.

6.

References

1.

B. Ahmad and J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl. 2009, Art. ID 708576, 11 pp.

2.

B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations
with three-point boundary conditions, Comput. Math. Appl. 58 (2009), no. 9,
1838–1843.

3.

B. Ahmad and J. J. Nieto, Existence results for nonlinear impulsive hybrid boundary value problems involving
fractional differential equations, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 3,
251–258.

4.

B. Ahmad and S. Sivasundaram, Existence and uniqueness results for nonlinear boundary
value problems of fractional differential equations with separated boundary conditions,
Commun. Appl. Anal. 13 (2009), no. 1, 121–127.

5.

H. F. Bohnenblust and S. Karlin, On a theorem of Ville, Contributions to the Theory of Games, 155–160. Annals of Mathematics Studies, no. 24. Princeton University Press, Princeton, N. J., 1950.

6.

Y.-K. Chang, W. T. Li, and J. J. Nieto, Controllability of evolution differential inclusions
in Banach spaces, Nonlinear Anal. 67 (2007), no. 2, 623–632.

7.

Y.-K. Chang and J. J. Nieto, Some new existence results for fractional differential
inclusions with boundary conditions, Math. Comput. Modelling 49 (2009), no. 3-4, 605–609.

8.

Y.-K. Chang and J. J. Nieto, Existence of solutions for impulsive neutral integro-differential inclusions with
nonlocal initial conditions via fractional operators, Numer. Funct. Anal. Optim. 30
(2009), no. 3-4, 227–244.

9.

Y.-K. Chang, J. J. Nieto, and W. S. Li, On impulsive hyperbolic differential inclusions
with nonlocal initial conditions, J. Optim. Theory Appl. 140 (2009), no. 3, 431–442.

10.

V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for multi-term fractional
differential equations, J. Math. Anal. Appl. 345 (2008), no. 2, 754–765.

11.

K. Deimling, Multivalued Differential Equations, Walter de Gruyter & Co., Berlin, 1992.

12.

V. Gafiychuk, B. Datsko, and V. Meleshko, Mathematical modeling of time fractional
reaction-diffusion systems, J. Comput. Appl. Math. 220 (2008), no. 1-2, 215–225.

13.

J. Henderson and A. Ouahab, Fractional functional differential inclusions with finite
delay, Nonlinear Anal. 70 (2009), no. 5, 2091–2105.

14.

S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Academic
Publishers, Dordrecht, 1997.

15.

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional
Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V.,
Amsterdam, 2006.

16.

S. Ladaci, J. L. Loiseau, and A. Charef, Fractional order adaptive high-gain controllers
for a class of linear systems, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), no. 4,
707–714.

17.

A. Lasota and Z. Opial, An application of the Kakutani—Ky Fan theorem in the theory
of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom.
Phys. 13 (1965), 781–786.

18.

M. P. Lazarevic, Finite time stability analysis of $PD^{\alpha}$ fractional control of robotic timedelay
systems, Mech. Res. Comm. 33 (2006), no. 2, 269–279.

19.

W. S. Li, Y. K. Chang, and J. J. Nieto, Solvability of impulsive neutral evolution differential
inclusions with state-dependent delay, Math. Comput. Modelling 49 (2009), no.
9-10, 1920–1927.

20.

J. J. Nieto and R. Rodriguez-Lopez, Euler polygonal method for metric dynamical systems,
Inform. Sci. 177 (2007), no. 20, 4256–4270.

21.

A. Ouahab, Some results for fractional boundary value problem of differential inclusions,
Nonlinear Anal. 69 (2008), no. 11, 3877–3896.

22.

I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA,
1999.

23.

S. Z. Rida, H. M. El-Sherbiny, and A. A. M. Arafa, On the solution of the fractional
nonlinear Schrodinger equation, Phys. Lett. A 372 (2008), no. 5, 553–558.

24.

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives,
Gordon and Breach Science Publishers, Yverdon, 1993.

25.

G. V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies
in Mathematics, 41. American Mathematical Society, Providence, RI, 2002.

26.

S. Zhang, Existence of solution for a boundary value problem of fractional order, Acta
Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 220–228.