JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE RESULTS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH SEPARATED BOUNDARY CONDITIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE RESULTS FOR FRACTIONAL DIFFERENTIAL INCLUSIONS WITH SEPARATED BOUNDARY CONDITIONS
Ahmad, Bashir;
  PDF(new window)
 Abstract
In this paper, we apply Bohnenblust-Karlins fixed point theorem to prove the existence of solutions for a class of fractional differential inclusions with separated boundary conditions. Some applications of the main result are also presented.
 Keywords
fractional differential inclusions;separated boundary conditions;Bohnenblust-Karlins fixed point theorem;
 Language
English
 Cited by
1.
Existence and Controllability Results for Nonlocal Fractional Impulsive Differential Inclusions in Banach Spaces, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
2.
A nonlocal three-point inclusion problem of Langevin equation with two different fractional orders, Advances in Difference Equations, 2012, 2012, 1, 54  crossref(new windwow)
3.
Existence Results for a Riemann-Liouville-Type Fractional Multivalued Problem with Integral Boundary Conditions, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
4.
On the Dimension of the Solution Set for Semilinear Fractional Differential Inclusions, Abstract and Applied Analysis, 2012, 2012, 1  crossref(new windwow)
5.
Existence and controllability results for fractional semilinear differential inclusions, Nonlinear Analysis: Real World Applications, 2011, 12, 6, 3642  crossref(new windwow)
6.
Mild Solutions for Nonlocal Impulsive Fractional Semilinear Differential Inclusions with Delay in Banach Spaces, Applied Mathematics, 2013, 04, 07, 40  crossref(new windwow)
7.
Fractional differential inclusions with fractional separated boundary conditions, Fractional Calculus and Applied Analysis, 2012, 15, 3  crossref(new windwow)
 References
1.
B. Ahmad and J. J. Nieto, Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Bound. Value Probl. 2009, Art. ID 708576, 11 pp.

2.
B. Ahmad and J. J. Nieto, Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009), no. 9, 1838–1843. crossref(new window)

3.
B. Ahmad and J. J. Nieto, Existence results for nonlinear impulsive hybrid boundary value problems involving fractional differential equations, Nonlinear Anal. Hybrid Syst. 3 (2009), no. 3, 251–258. crossref(new window)

4.
B. Ahmad and S. Sivasundaram, Existence and uniqueness results for nonlinear boundary value problems of fractional differential equations with separated boundary conditions, Commun. Appl. Anal. 13 (2009), no. 1, 121–127.

5.
H. F. Bohnenblust and S. Karlin, On a theorem of Ville, Contributions to the Theory of Games, 155–160. Annals of Mathematics Studies, no. 24. Princeton University Press, Princeton, N. J., 1950.

6.
Y.-K. Chang, W. T. Li, and J. J. Nieto, Controllability of evolution differential inclusions in Banach spaces, Nonlinear Anal. 67 (2007), no. 2, 623–632. crossref(new window)

7.
Y.-K. Chang and J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Modelling 49 (2009), no. 3-4, 605–609.

8.
Y.-K. Chang and J. J. Nieto, Existence of solutions for impulsive neutral integro-differential inclusions with nonlocal initial conditions via fractional operators, Numer. Funct. Anal. Optim. 30 (2009), no. 3-4, 227–244. crossref(new window)

9.
Y.-K. Chang, J. J. Nieto, and W. S. Li, On impulsive hyperbolic differential inclusions with nonlocal initial conditions, J. Optim. Theory Appl. 140 (2009), no. 3, 431–442. crossref(new window)

10.
V. Daftardar-Gejji and S. Bhalekar, Boundary value problems for multi-term fractional differential equations, J. Math. Anal. Appl. 345 (2008), no. 2, 754–765. crossref(new window)

11.
K. Deimling, Multivalued Differential Equations, Walter de Gruyter & Co., Berlin, 1992.

12.
V. Gafiychuk, B. Datsko, and V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math. 220 (2008), no. 1-2, 215–225. crossref(new window)

13.
J. Henderson and A. Ouahab, Fractional functional differential inclusions with finite delay, Nonlinear Anal. 70 (2009), no. 5, 2091–2105. crossref(new window)

14.
S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis. Vol. I, Kluwer Academic Publishers, Dordrecht, 1997.

15.
A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

16.
S. Ladaci, J. L. Loiseau, and A. Charef, Fractional order adaptive high-gain controllers for a class of linear systems, Commun. Nonlinear Sci. Numer. Simul. 13 (2008), no. 4, 707–714. crossref(new window)

17.
A. Lasota and Z. Opial, An application of the Kakutani—Ky Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786.

18.
M. P. Lazarevic, Finite time stability analysis of $PD^{\alpha}$ fractional control of robotic timedelay systems, Mech. Res. Comm. 33 (2006), no. 2, 269–279. crossref(new window)

19.
W. S. Li, Y. K. Chang, and J. J. Nieto, Solvability of impulsive neutral evolution differential inclusions with state-dependent delay, Math. Comput. Modelling 49 (2009), no. 9-10, 1920–1927. crossref(new window)

20.
J. J. Nieto and R. Rodriguez-Lopez, Euler polygonal method for metric dynamical systems, Inform. Sci. 177 (2007), no. 20, 4256–4270. crossref(new window)

21.
A. Ouahab, Some results for fractional boundary value problem of differential inclusions, Nonlinear Anal. 69 (2008), no. 11, 3877–3896. crossref(new window)

22.
I. Podlubny, Fractional Differential Equations, Academic Press, Inc., San Diego, CA, 1999.

23.
S. Z. Rida, H. M. El-Sherbiny, and A. A. M. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Phys. Lett. A 372 (2008), no. 5, 553–558. crossref(new window)

24.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science Publishers, Yverdon, 1993.

25.
G. V. Smirnov, Introduction to the Theory of Differential Inclusions, Graduate Studies in Mathematics, 41. American Mathematical Society, Providence, RI, 2002.

26.
S. Zhang, Existence of solution for a boundary value problem of fractional order, Acta Math. Sci. Ser. B Engl. Ed. 26 (2006), no. 2, 220–228.