JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON HARMONICITY IN A DISC AND n-HARMONICITY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON HARMONICITY IN A DISC AND n-HARMONICITY
Lee, Jae-Sung;
  PDF(new window)
 Abstract
Let be either a power bounded radial measure with compact support on the unit disc D with such that there is a > 0 so that for every \ {0,1}, or just a radial probability measure on D. Here, we provide a decomposition of the set X = { exists}. Let , ..., be measures on D with above mentioned properties. Here, we prove that if satisfies an invariant volume mean value property with respect to , ..., , then f is n-harmonic.
 Keywords
mean value property;harmonicity;n-harmonicity;convolution;spectrum;
 Language
English
 Cited by
 References
1.
P. Ahern, M. Flores, and W. Rudin, An invariant volume-mean-value property, J. Funct. Anal. 111 (1993), no. 2, 380–397. crossref(new window)

2.
J. Arazy and M. Englis, Iterates and the boundary behavior of the Berezin transform, Ann. Inst. Fourier (Grenoble) 51 (2001), no. 4, 1101–1133. crossref(new window)

3.
Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1, 1), Ann. Inst. Fourier (Grenoble) 42 (1992), no. 3, 671–694. crossref(new window)

4.
M. Englis, Functions invariant under the Berezin transform, J. Funct. Anal. 121 (1994), no. 1, 233–254. crossref(new window)

5.
H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. crossref(new window)

6.
H. Furstenberg, Boundaries of Riemannian symmetric spaces, Symmetric spaces (Short Courses, Washington Univ., St. Louis, Mo., 1969–1970), pp. 359–377. Pure and Appl. Math., Vol. 8, Dekker, New York, 1972.

7.
Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), no. 3, 313–328. crossref(new window)

8.
J. Lee, Weighted Berezin transform in the polydisc, J. Math. Anal. Appl. 338 (2008), no. 2, 1489–1493. crossref(new window)

9.
W. Rudin, Function Theory in the Unit Ball of $C^n$, Springer-Verlag, New York Inc., 1980.