JOURNAL BROWSE
Search
Advanced SearchSearch Tips
HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
HELICOIDAL SURFACES AND THEIR GAUSS MAP IN MINKOWSKI 3-SPACE
Choi, Mie-Kyung; Kim, Young-Ho; Liu, Huili; Yoon, Dae-Won;
  PDF(new window)
 Abstract
The helicoidal surface is a generalization of rotation surface in a Minkowski space. We study helicoidal surfaces in a Minkowski 3-space in terms of their Gauss map and provide some examples of new classes of helicoidal surfaces with constant mean curvature in a Minkowski 3-space.
 Keywords
helicoidal surfaces;Enneper`s surface;Minkowski space;pointwise 1-type Gauss map;
 Language
English
 Cited by
1.
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP,;;

대한수학회보, 2013. vol.50. 4, pp.1345-1356 crossref(new window)
2.
HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE,;;

대한수학회보, 2015. vol.52. 5, pp.1569-1578 crossref(new window)
3.
SHAPE OPERATOR AND GAUSS MAP OF POINTWISE 1-TYPE,;;

대한수학회지, 2015. vol.52. 6, pp.1337-1346 crossref(new window)
1.
SHAPE OPERATOR AND GAUSS MAP OF POINTWISE 1-TYPE, Journal of the Korean Mathematical Society, 2015, 52, 6, 1337  crossref(new windwow)
2.
CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP, Bulletin of the Korean Mathematical Society, 2013, 50, 4, 1345  crossref(new windwow)
3.
Classifications of Canal Surfaces with L1-Pointwise 1-Type Gauss Map, Milan Journal of Mathematics, 2015, 83, 1, 145  crossref(new windwow)
4.
HELICOIDAL SURFACES OF THE THIRD FUNDAMENTAL FORM IN MINKOWSKI 3-SPACE, Bulletin of the Korean Mathematical Society, 2015, 52, 5, 1569  crossref(new windwow)
 References
1.
C. Baikoussis and D. E. Blair, On the Gauss map of ruled surfaces, Glasgow Math. J. 34 (1992), no. 3, 355–359. crossref(new window)

2.
C. Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II 2(16) (1993), 31–42.

3.
C. C. Beneki and T. Koufogiorgos, Helicoidal surfaces with prescribed mean or Gaussian curvature, J. Geom. 63 (1998), no. 1-2, 25–29. crossref(new window)

4.
C. C. Beneki, G. Kaimakamis, and B. J. Papantoniou, Helicoidal surfaces in threedimensional Minkowski space, J. Math. Anal. Appl. 275 (2002), no. 2, 586–614. crossref(new window)

5.
B.-Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, Series in Pure Mathematics, 1. World Scientific Publishing Co., Singapore, 1984.

6.
B.-Y. Chen, Finite Type Submanifolds and Generalizations, University of Rome, 1985.

7.
B.-Y. Chen, M. Choi, and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc. 42 (2005), no. 3, 447–455. crossref(new window)

8.
B.-Y. Chen and P. Piccinni, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc. 35 (1987), no. 2, 161–186. crossref(new window)

9.
M. Choi and Y. H. Kim, Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bull. Korean Math. Soc. 38 (2001), no. 4, 753–761.

10.
F. Ji and Z. H. Hou, Helicoidal surfaces under the cubic screw motion in Minkowski 3-space, J. Math. Anal. Appl. 318 (2006), no. 2, 634–647. crossref(new window)

11.
U.-H. Ki, D.-S. Kim, Y. H. Kim, and Y.-M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math. 13 (2009), no. 1, 317–338.

12.
Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (2000), no. 3-4, 191–205. crossref(new window)

13.
Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mountain J. Math. 35 (2005), no. 5, 1555–1581. crossref(new window)