JOURNAL BROWSE
Search
Advanced SearchSearch Tips
STRONGLY COTORSION (TORSION-FREE) MODULES AND COTORSION PAIRS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
STRONGLY COTORSION (TORSION-FREE) MODULES AND COTORSION PAIRS
Yan, Hangyu;
  PDF(new window)
 Abstract
In this paper, strongly cotorsion (torsion-free) modules are studied and strongly cotorsion (torsion-free) dimension is introduced. It is shown that every module has a special -preenvelope and an ST -cover for any based on some results of cotorsion pairs from [9]. Some characterizations of strongly cotorsion (torsion-free) dimension of a module are given.
 Keywords
strongly cotorsion module;strongly torsion-free module;cotorsion pair;strongly cotorsion dimension;strongly torsion-free dimension;
 Language
English
 Cited by
1.
Totally acyclic complexes, Journal of Algebra, 2017, 470, 300  crossref(new windwow)
2.
Gorenstein injective envelopes and covers over two sided noetherian rings, Communications in Algebra, 2017, 45, 5, 2238  crossref(new windwow)
 References
1.
F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, New York-Heidelberg, 1974.

2.
H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488. crossref(new window)

3.
P. C. Eklof, S. Shelah, and J. Trlifaj, On the cogeneration of cotorsion pairs, J. Algebra 277 (2004), no. 2, 572-578. crossref(new window)

4.
P. C. Eklof and J. Trlifaj, Covers induced by Ext, J. Algebra 231 (2000), no. 2, 640-651. crossref(new window)

5.
P. C. Eklof and J. Trlifaj, How to make Ext vanish, Bull. Lond. Math. Soc. 33 (2001), no. 1, 41-51. crossref(new window)

6.
E. E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), no. 3, 189-209. crossref(new window)

7.
E. E. Enochs, Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc. 92 (1984), no. 2, 179-184. crossref(new window)

8.
E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter & Co., Berlin, 2000.

9.
R. Gobel and J. Trlifaj, Approximations and Endomorphism Algebras of Modules, Walter de Gruyter GmbH & Co. KG, Berlin, 2006.

10.
J. J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, 1979.

11.
L. Salce, Cotorsion theories for abelian groups, Symposia Mathematica, Vol. XXIII (Conf. Abelian Groups and their Relationship to the Theory of Modules, INDAM, Rome, 1977), pp. 11-32, Academic Press, London-New York, 1979.

12.
R. Sazeedeh, Strongly torsion-free modules and local cohomology over Cohen-Macaulay rings, Comm. Algebra 33 (2005), no. 4, 1127-1135. crossref(new window)

13.
J. Trlifaj, Infinite dimensional tilting modules and cotorsion pairs, Handbook of tilting theory, 279-321, London Math. Soc. Lecture Note Ser., 332, Cambridge Univ. Press, Cambridge, 2007.

14.
C. A. Weibel, An Introduction to Homological Algebra, Cambridge, Cambridge University Press, 1994.

15.
J. Xu, Flat Covers of Modules, Lecture Notes in Math. 1634, Springer-Verlag, Berlin, 1996.