JOURNAL BROWSE
Search
Advanced SearchSearch Tips
LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON THE SEMI-DIRECT PRODUCT Rn
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
LEFT-INVARIANT MINIMAL UNIT VECTOR FIELDS ON THE SEMI-DIRECT PRODUCT Rn
Yi, Seung-Hun;
  PDF(new window)
 Abstract
We provide the set of left-invariant minimal unit vector fields on the semi-direct product , where P is a nonsingular diagonal matrix and on the 7 classes of 4-dimensional solvable Lie groups of the form which are unimodular and of type (R).
 Keywords
left-invariant minimal unit vector field;Lie group;semi-direct product;
 Language
English
 Cited by
 References
1.
E. Boeckx and L. Vanhecke, Harmonic and minimal radial vector fields, Acta Math. Hungar. 90 (2001), no. 4, 317-331. crossref(new window)

2.
E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77-93. crossref(new window)

3.
O. Gil-Medriano and E. Llinares-Fuster, Minimal unit vector fields, Tohoku Math. J. (2) 54 (2002), no. 1, 71-84. crossref(new window)

4.
O. Gil-Medriano and E. Llinares-Fuster, Second variation of volume and energy of vector fields. Stability of Hopf vector fields, Math. Ann. 320 (2001), no. 3, 531-545. crossref(new window)

5.
H. Gluck and W. Ziller, On the volume of a unit vector field on the three-sphere, Comment. Math. Helv. 61 (1986), no. 2, 177-192. crossref(new window)

6.
J. C. Gonzalez-Davila and L. Vanhecke, Examples of minimal unit vector fields, Special issue in memory of Alfred Gray (1939-1998), Ann. Global Anal. Geom. 18 (2000), no. 3-4, 385-404. crossref(new window)

7.
J. C. Gonzalez-Davila and L. Vanhecke, Minimal and harmonic characteristic vector fields on three-dimensional contact metric manifolds, J. Geom. 72 (2001), no. 1-2, 65-76. crossref(new window)

8.
J. C. Gonzalez-Davila and L. Vanhecke, Energy and volume of unit vector fields on three-dimensional Riemannian manifolds, Differential Geom. Appl. 16 (2002), no. 3, 225-244. crossref(new window)

9.
D. L. Johnson, Volumes of flows, Proc. Amer. Math. Soc. 104 (1988), no. 3, 923-931. crossref(new window)

10.
O. Kowalski and Z. Vlasek, omogeneous Riemannian manifolds with only one homogeneous geodesic, Publ. Math. Debrecen 62 (2003), no. 3-4, 437-446.

11.
J. B. Lee, K. B. Lee, J. Shin, and S. Yi, Unimodular groups of type ${\mathbb{R}}^3{\rtimes}{\mathbb{R}}$, J. Korean Math. Soc. 44 (2007), no. 5, 1121-1137. crossref(new window)

12.
J. Milnor, Curvatures of left invariant metrics on Lie groups, Advances in Math. 21 (1976), no. 3, 293-329. crossref(new window)

13.
S. L. Pedersen, Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336 (1993), no. 1, 69-78. crossref(new window)

14.
W. A. Poor, Differential Geometric Structures, McGraw-Hill Book Co., New York, 1981.

15.
M. Salvai, OOn the volume of unit vector fields on a compact semisimple Lie group, J. Lie Theory 13 (2003), no. 2, 457-464.

16.
K. Tsukada and L. Vanhecke, Invariant minimal unit vector fields on Lie groups, Period. Math. Hungar. 40 (2000), no. 2, 123-133. crossref(new window)

17.
S. Yi, Left-invariant minimal unit vector fields on a Lie group of constant negative sectional curvature, Bull. Korean Math. Soc. 46 (2009), no. 4, 713-720. crossref(new window)