JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXPONENTS OF CARTESIAN PRODUCTS OF TWO DIGRAPHS OF SPECIAL ORDERS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXPONENTS OF CARTESIAN PRODUCTS OF TWO DIGRAPHS OF SPECIAL ORDERS
Kim, Byeong-Moon; Rho, Yoo-Mi;
  PDF(new window)
 Abstract
In this paper, we find the maximum exponent of D E, the cartesian product of two digraphs D and E on n, n + 2 vertices, respectively for an even integer . We also characterize the extrema cases.
 Keywords
exponents;digraphs;Cartesian products;Wielandt graphs;Frobenius numbers;
 Language
English
 Cited by
 References
1.
A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299-312. crossref(new window)

2.
B. M. Kim, B. C. Song, and W. Hwang, Wielandt type theorem for Cartesian product of digraphs, Linear Algebra Appl. 429 (2008), no. 4, 841-848. crossref(new window)

3.
R. Lamprey and B. Barnes, Primitivity of products of digraphs, Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 637-644, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979.

4.
B. L. Liu, B. D. McKay, N. C. Wormald, and K. Zhang, The exponent set of symmetric primitive (0; 1) matrices with zero trace, Linear Algebra Appl. 133 (1990), 121-131. crossref(new window)

5.
J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469. crossref(new window)

6.
J. Y. Shao, The exponent set of symmetric primitive matrices, Sci. Sinica Ser. A 9 (1986), 931-939.

7.
H. Wielandt, Unzerlegbare, nicht negative Matrizen, Math. Z. 52 (1950), 642-648. crossref(new window)