JOURNAL BROWSE
Search
Advanced SearchSearch Tips
THREE SOLUTIONS TO A CLASS OF NEUMANN DOUBLY EIGENVALUE ELLIPTIC SYSTEMS DRIVEN BY A (p1,...,pn)-LAPLACIAN
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
THREE SOLUTIONS TO A CLASS OF NEUMANN DOUBLY EIGENVALUE ELLIPTIC SYSTEMS DRIVEN BY A (p1,...,pn)-LAPLACIAN
Afrouzi, Ghasem A.; Heidarkhani, Shapour; O'Regan, Donal;
  PDF(new window)
 Abstract
In this paper we establish the existence of at least three weak solutions for Neumann doubly eigenvalue elliptic systems driven by a ()-Laplacian. Our main tool is a recent three critical points theorem of B. Ricceri.
 Keywords
three solutions;critical point;()-Laplacian;multiplicity results;Neumann problem;
 Language
English
 Cited by
1.
EXISTENCE OF THREE SOLUTIONS FOR A CLASS OF NAVIER QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE (p1, …, pn)-BIHARMONIC,;

대한수학회보, 2013. vol.50. 1, pp.57-71 crossref(new window)
1.
Infinitely many solutions for class of Neumann quasilinear elliptic systems, Boundary Value Problems, 2012, 2012, 1, 54  crossref(new windwow)
2.
EXISTENCE OF THREE SOLUTIONS FOR A CLASS OF NAVIER QUASILINEAR ELLIPTIC SYSTEMS INVOLVING THE (p1, …, pn)-BIHARMONIC, Bulletin of the Korean Mathematical Society, 2013, 50, 1, 57  crossref(new windwow)
3.
Multiple solutions for a class of $(p_1, \ldots, p_n)$-biharmonic systems, Communications on Pure and Applied Analysis, 2012, 12, 3, 1393  crossref(new windwow)
4.
Three solutions for a perturbed Navier problem, Ricerche di Matematica, 2012, 61, 1, 117  crossref(new windwow)
5.
Steklov-Neumann Eigenproblens: A Spectral Characterization of the Sobolev Trace Spaces, Milan Journal of Mathematics, 2015, 83, 1, 177  crossref(new windwow)
 References
1.
G. A. Afrouzi and S. Heidarkhani, Existence of three solutions for a class of Dirichlet quasilinear elliptic systems involving the $(p_1,...,p_n)-Laplacian$, Nonlinear Anal. 70 (2009), no. 1, 135-143. crossref(new window)

2.
G. A. Afrouzi and S. Heidarkhani, Three solutions for a Dirichlet boundary value problem involving the p-Laplacian, Nonlinear Anal. 66 (2007), no. 10, 2281-2288. crossref(new window)

3.
G. Anello and G. Cordaro, An existence theorem for the Neumann problem involving the p-Laplacian, J. Convex Anal. 10 (2003), no. 1, 185-198.

4.
G. Anello and G. Cordaro, Infinitely many arbitrarily small positive solutions for the Dirichlet problem involving the p-Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 3, 511-519. crossref(new window)

5.
L. Boccardo and D. Guedes de Figueiredo, Some remarks on a system of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 9 (2002), no. 3, 309-323. crossref(new window)

6.
G. Bonanno, Existence of three solutions for a two point boundary value problem, Appl. Math. Lett. 13 (2000), no. 5, 53-57.

7.
G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003), no. 4, 651-665. crossref(new window)

8.
G. Bonanno and P. Candito, Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. Math. (Basel) 80 (2003), no. 4, 424-429.

9.
G. Bonanno and R. Livrea, Multiplicity theorems for the Dirichlet problem involving the p-Laplacian, Nonlinear Anal. 54 (2003), no. 1, 1-7. crossref(new window)

10.
Y. Bozhkova and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fibering method, J. Differential Equations 190 (2003), no. 1, 239-267. crossref(new window)

11.
P. Candito, Existence of three solutions for a nonautonomous two point boundary value problem, J. Math. Anal. Appl. 252 (2000), no. 2, 532-537. crossref(new window)

12.
A. Djellit and S. Tas, Quasilinear elliptic systems with critical Sobolev exponents in $R^N$, Nonlinear Anal. 66 (2007), no. 7, 1485-1497. crossref(new window)

13.
A. Djellit and S. Tas, On some nonlinear elliptic systems, Nonlinear Anal. 59 (2004), no. 5, 695-706. crossref(new window)

14.
P. Drabek, N. M. Stavrakakis, and N. B. Zographopoulos, Multiple nonsemitrivial solutions for quasilinear elliptic systems, Differential Integral Equations 16 (2003), no. 12, 1519-1531.

15.
S. Heidarkhani and D. Motreanu, Multiplicity results for a two-point boundary value problem, preprint.

16.
A. Kristaly, Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on strip-like domains, Proc. Edinb. Math. Soc. (2) 48 (2005), no. 2, 465-477. crossref(new window)

17.
C. Li and C.-L. Tang, Three solutions for a class of quasilinear elliptic systems involving the (p; q)-Laplacian, Nonlinear Anal. 69 (2008), no. 10, 3322-3329. crossref(new window)

18.
S. A. Marano and D. Motreanu, On a three critical points theorem for non-differentiable functions and applications to nonlinear boundary value problems, Nonlinear Anal. 48 (2002), no. 1, Ser. A: Theory Methods, 37-52. crossref(new window)

19.
B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000), no. 11-13, 1485-1494. crossref(new window)

20.
B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000), no. 3, 220-226. crossref(new window)

21.
B. Ricceri, A three critical points theorem revisited, Nonlinear Anal. 70 (2009), no. 9, 3084-3089. crossref(new window)

22.
T. Teramoto, On positive radial entire solutions of second-order quasilinear elliptic systems, J. Math. Anal. Appl. 282 (2003), no. 2, 531-552. crossref(new window)

23.
G. Q. Zhang, X. P. Liu, and S. Y. Liu, Remarks on a class of quasilinear elliptic systems involving the (p, q)-Laplacian, Electron. J. Differential Equations 2005 (2005), no. 20, 10 pp.