JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SUBCLASSES OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SUBCLASSES OF k-UNIFORMLY CONVEX AND k-STARLIKE FUNCTIONS DEFINED BY SĂLĂGEAN OPERATOR
Seker, Bilal; Acu, Mugur; Eker, Sevtap Sumer;
  PDF(new window)
 Abstract
The main object of this paper is to introduce and investigate new subclasses of normalized analytic functions in the open unit disc , which generalize the familiar class of k-starlike functions. The various properties and characteristics for functions belonging to these classes derived here include (for example) coefficient inequalities, distortion theorems involving fractional calculus, extreme points, integral operators and integral means inequalities.
 Keywords
Slgean operator;k-starlike;k-uniformly convex;coefficient inequalities;distortion inequalities;extreme points;integral means;fractional derivative;integral operators;
 Language
English
 Cited by
 References
1.
P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983.

2.
A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.

3.
A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364-370. crossref(new window)

4.
S. Kanas and A. Wisniowska, Conic regions and k-uniform convexity, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327-336. crossref(new window)

5.
S. Kanas and A. Wisniowska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl. 45 (2000), no. 4, 647-657.

6.
J. E. Littlewood, On inequalities in the theory of functions, Proc. London Math. Soc. (2) 23 (1925), 481-519. crossref(new window)

7.
W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2, 165-175.

8.
S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18 (1978), no. 1, 53-59.

9.
F. Ronnning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196. crossref(new window)

10.
G. S. Salagean, Subclasses of univalent functions, Complex analysis|fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013, Springer, Berlin, 1983.

11.
G. S. Salagean, On some classes of univalent functions, Seminar of geometric function theory, 142-158, Preprint, 82-4, Univ. "Babes-Bolyai", Cluj-Napoca, 1983.

12.
H. M. Srivastava and S Owa, Univalent Functions, Fractional Calculus, and Their Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1989.