JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A LOWER BOUND FOR THE GENUS OF SELF-AMALGAMATION OF HEEGAARD SPLITTINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A LOWER BOUND FOR THE GENUS OF SELF-AMALGAMATION OF HEEGAARD SPLITTINGS
Li, Fengling; Lei, Fengchun;
  PDF(new window)
 Abstract
Let M be a compact orientable closed 3-manifold, and F a non-separating incompressible closed surface in M. Let M`
 Keywords
Heegaard distance;Heegaard genus;self-amalgamation;
 Language
English
 Cited by
 References
1.
D. Bachman and R. Derby-Talbot, Degeneration of Heegaard genus, a survey, Workshop on Heegaard Splittings, 1-15, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007.

2.
D. Bachman, S. Schleimer, and E. Sedgwick, Sweepouts of amalgamated 3-manifolds, Algebr. Geom. Topol. 6 (2006), 171-194. crossref(new window)

3.
A. J. Casson and C. McA Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987), no. 3, 275-283. crossref(new window)

4.
K. Du, F. Lei, and J. Ma, Distance and self-amalgamation of Heegaard splittings, preprint.

5.
K. Hartshorn, Heegaard splittings of Haken manifolds have bounded distance, Pacific J. Math. 204 (2002), no. 1, 61-75. crossref(new window)

6.
J. Hempel, 3-manifolds as viewed from the curve complex, Topology 40 (2001), no. 3, 631-657. crossref(new window)

7.
T. Kobayashi and R. Qiu, The amalgamation of high distance Heegaard splittings is always efficient, Math. Ann. 341 (2008), no. 3, 707-715. crossref(new window)

8.
T. Kobayashi, R. Qiu, Y. Rieck, and S. Wang, Separating incompressible surfaces and stabilizations of Heegaard splittings, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 3, 633-643. crossref(new window)

9.
M. Lackenby, The Heegaard genus of amalgamated 3-manifolds, Geom. Dedicata 109 (2004), 139-145. crossref(new window)

10.
T. Li, On the Heegaard splittings of amalgamated 3-manifolds, Workshop on Heegaard Splittings, 157-190, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007.

11.
Y. Moriah, On boundary primitive manifolds and a theorem of Casson-Gordon, Topology Appl. 125 (2002), no. 3, 571-579. crossref(new window)

12.
K. Morimoto, Tunnel number, connected sum and meridional essential surfaces, Topology 39 (2000), no. 3, 469-485. crossref(new window)

13.
R. Qiu and F. Lei, On the Heegaard genera of 3-manifolds containing non-separating surfaces, Topology and physics, 341-347, Nankai Tracts Math., 12, World Sci. Publ., Hackensack, NJ, 2008.

14.
M. Scharlemann, Local detection of strongly irreducible Heegaard splittings, Topology Appl. 90 (1998), no. 1-3, 135-147. crossref(new window)

15.
M. Scharlemann and A. Thompson, Thin position for 3-manifolds, Geometric topology (Haifa, 1992), 231-238, Contemp. Math., 164, Amer. Math. Soc., Providence, RI, 1994.

16.
M. Scharlemann and A. Thompson, Heegaard splittings of (surface) ${\times}$ I are standard, Math. Ann. 295 (1993), no. 3, 549-564. crossref(new window)

17.
M. Scharlemann and M. Tomova, Alternate Heegaard genus bounds distance, Geom. Topol. 10 (2006), 593-617. crossref(new window)

18.
J. Schultens, Additivity of tunnel number for small knots, Comment. Math. Helv. 75 (2000), no. 3, 353-367. crossref(new window)

19.
J. Schultens and R. Weidmann, Destabilizing amalgamated Heegaard splittings, Workshop on Heegaard Splittings, 319-334, Geom. Topol. Monogr., 12, Geom. Topol. Publ., Coventry, 2007.

20.
J. Souto, Distance in the curve complex and Heegaard genus, preprint.

21.
G. Yang and F. Lei, On amalgamations of Heegaard splittings with high distance, Proc. Amer. Math. Soc. 137 (2009), no. 2, 723-731. crossref(new window)