JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE 2k-TH POWER MEAN VALUE OF THE GENERALIZED QUADRATIC GAUSS SUMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE 2k-TH POWER MEAN VALUE OF THE GENERALIZED QUADRATIC GAUSS SUMS
He, Yanfeng; Zhang, Wenpeng;
  PDF(new window)
 Abstract
The main purpose of this paper is using the elementary and analytic methods to study the properties of the 2k-th power mean value of the generalized quadratic Gauss sums, and give two exact mean value formulae for k
 Keywords
generalized quadratic Gauss sums;2k-th power mean value;calculating formula;identity;
 Language
English
 Cited by
1.
AN IDENTITY ON THE 2m-TH POWER MEAN VALUE OF THE GENERALIZED GAUSS SUMS,;;

대한수학회보, 2012. vol.49. 6, pp.1327-1334 crossref(new window)
1.
On the addition of two weighted squares of units mod n, International Journal of Number Theory, 2016, 12, 07, 1783  crossref(new windwow)
2.
AN IDENTITY ON THE 2m-TH POWER MEAN VALUE OF THE GENERALIZED GAUSS SUMS, Bulletin of the Korean Mathematical Society, 2012, 49, 6, 1327  crossref(new windwow)
3.
On the addition of squares of units and nonunits modulo n, Journal of Number Theory, 2015, 155, 1  crossref(new windwow)
 References
1.
Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

2.
T. Cochrane and Z. Y. Zheng, Pure and mixed exponential sums, Acta Arith. 91 (1999), no. 3, 249-278.

3.
L. K. Hua, Introduction to Number Theory, Science Press, Beijing, 1979.

4.
A. Weil, On some exponential sums, Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204-207. crossref(new window)

5.
W. Zhang, Moments of generalized quadratic Gauss sums weighted by L-functions, J. Number Theory 92 (2002), no. 2, 304-314. crossref(new window)

6.
W. Zhang and H. Liu, On the general Gauss sums and their fourth power mean, Osaka J. Math. 42 (2005), no. 1, 189-199.