JOURNAL BROWSE
Search
Advanced SearchSearch Tips
DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION
Baek, In-Soo;
  PDF(new window)
 Abstract
We give characterizations of the differentiability points and the non-differentiability points of the Riesz-Ngy-Takcs(RNT) singulr function using the distribution sets in the unit interval. Using characterizations, we show that the Hausdorff dimension of the non-differentiability points of the RNT singular function is greater than 0 and the packing dimension of the infinite derivative points of the RNT singular function is less than 1. Further the RNT singular function is nowhere differentiable in the sense of topological magnitude, which leads to that the packing dimension of the non-differentiability points of the RNT singular function is 1. Finally we show that our characterizations generalize a recent result from the (, - 1)-expansion associated with the RNT singular function adding a new result for a sufficient condition for the non-differentiability points.
 Keywords
Hausdorff dimension;packing dimension;distribution set;local dimension set;singular function;metric number theory;
 Language
English
 Cited by
1.
GOLDEN RATIO RIESZ-N$\acute{A}$GY-TAK$\acute{A}$CS DISTRIBUTION,;

충청수학회지, 2011. vol.24. 2, pp.247-252
2.
THE PARAMETER DISTRIBUTION SET FOR A SELF-SIMILAR MEASURE,;

대한수학회보, 2012. vol.49. 5, pp.1041-1055 crossref(new window)
3.
SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION,;

대한수학회논문집, 2015. vol.30. 1, pp.7-21 crossref(new window)
4.
EXAMPLES OF NON-DIFFERENTIABILITY POINTS OF RIESZ-NÁGY-TAKÁCS FUNCTION,;

Proceedings of the Jangjeon Mathematical Society, 2015. vol.18. 2, pp.145-151 crossref(new window)
1.
SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION, Communications of the Korean Mathematical Society, 2015, 30, 1, 7  crossref(new windwow)
2.
Cantor type functions in non-integer bases, Acta Mathematica Hungarica, 2017  crossref(new windwow)
3.
A singular function with a non-zero finite derivative on a dense set, Nonlinear Analysis: Theory, Methods & Applications, 2014, 95, 703  crossref(new windwow)
4.
A singular function with a non-zero finite derivative, Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 13, 5010  crossref(new windwow)
5.
A singular function with a non-zero finite derivative on a dense set with Hausdorff dimension one, Journal of Mathematical Analysis and Applications, 2016, 434, 1, 713  crossref(new windwow)
6.
THE PARAMETER DISTRIBUTION SET FOR A SELF-SIMILAR MEASURE, Bulletin of the Korean Mathematical Society, 2012, 49, 5, 1041  crossref(new windwow)
 References
1.
I. S. Baek, Relation between spectral classes of a self-similar Cantor set, J. Math. Anal. Appl. 292 (2004), no. 1, 294-302. crossref(new window)

2.
I. S. Baek, Dimensions of distribution sets in the unit interval, Commun. Korean Math. Soc. 22 (2007), no. 4, 547-552. crossref(new window)

3.
I. S. Baek, L. Olsen, and N. Snigireva, Divergence points of self-similar measures and packing dimension, Adv. Math. 214 (2007), no. 1, 267-287. crossref(new window)

4.
P. Billingsley, Probability and Measure, John Wiley & Sons, Inc., New York, 1995.

5.
C. D. Cutler, A note on equivalent interval covering systems for Hausdorff dimension on R, Internat. J. Math. Math. Sci. 11 (1988), no. 4, 643-649. crossref(new window)

6.
R. Darst, The Hausdorff dimension of the nondifferentiability set of the Cantor function is $[ln(2)/ln(3)]^2$, Proc. Amer. Math. Soc. 119 (1993), no. 1, 105-108.

7.
R. Darst, Hausdorff dimension of sets of non-differentiability points of Cantor functions, Math. Proc. Cambridge Philos. Soc. 117 (1995), no. 1, 185-191. crossref(new window)

8.
J. Eidswick. A characterization of the nondifferentiability set of the Cantor function, Proc. Amer. Math. Soc. 42 (1974), 214-217. crossref(new window)

9.
K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, Cambridge, 1986.

10.
K. J. Falconer, Techniques in Fractal Geometry, John Wiley & Sons, Ltd., Chichester, 1997.

11.
H. H. Lee and I. S. Baek, A note on equivalent interval covering systems for packing dimension of R, J. Korean Math. Soc. 28 (1991), no. 2, 195-205.

12.
L. Olsen, Extremely non-normal numbers, Math. Proc. Cambridge Philos. Soc. 137 (2004), no. 1, 43-53. crossref(new window)

13.
L. Olsen and S. Winter, Normal and non-normal points of self-similar sets and divergence points of self-similar measures, J. London Math. Soc. (2) 67 (2003), no. 1, 103-122. crossref(new window)

14.
J. Paradis, P. Viader, and L. Bibiloni, Riesz-Nagy singular functions revisited, J. Math. Anal. Appl. 329 (2007), no. 1, 592-602. crossref(new window)

15.
H. L. Royden, Real Analysis, Macmillan Publishing Company, 1988.