JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS
Cheon, Jeoung-Soo; Kim, Eun-Jeong; Lee, Chang-Ik; Shin, Yun-Ho;
  PDF(new window)
 Abstract
We show that the -prime radical of a ring R is the set of all strongly -nilpotent elements in R, where is an automorphism of R. We observe some conditions under which the -prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (, )-(semi)primeness of ideals of R.
 Keywords
-ideal;-prime ideal;-semiprime ideal;strongly -nilpotent element;-prime radical;prime radical;skew polynomial ring;skew Laurent polynomial ring;
 Language
English
 Cited by
1.
STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS,;;;

대한수학회지, 2015. vol.52. 4, pp.663-683 crossref(new window)
1.
Radicals of skew polynomial rings and skew Laurent polynomial rings, Journal of Algebra, 2011, 331, 1, 428  crossref(new windwow)
2.
STRUCTURE OF ZERO-DIVISORS IN SKEW POWER SERIES RINGS, Journal of the Korean Mathematical Society, 2015, 52, 4, 663  crossref(new windwow)
3.
On σ-nil ideals of bounded index of σ-nilpotence, Journal of Algebra, 2012, 371, 492  crossref(new windwow)
4.
Radicals in skew polynomial and skew Laurent polynomial rings, Journal of Pure and Applied Algebra, 2014, 218, 10, 1916  crossref(new windwow)
 References
1.
S. S. Bedi and J. Ram, Jacobson radical of skew polynomial rings and skew group rings, Israel J. Math. 35 (1980), no. 4, 327-338. crossref(new window)

2.
J. Lambek, Lectures on Rings and Modules, Chelsea Publishing Co., New York, 1976.

3.
T. Y. Lam, A. Leroy, and J. Matczuk, Primeness, semiprimeness and prime radical of Ore extensions, Comm. Algebra 25 (1997), no. 8, 2459-2506. crossref(new window)

4.
K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783-794. crossref(new window)

5.
K. R. Pearson, W. Stephenson, and J. F. Watters, Skew polynomials and Jacobson rings, Proc. London Math. Soc. (3) 42 (1981), no. 3, 559-576. crossref(new window)