JOURNAL BROWSE
Search
Advanced SearchSearch Tips
RELATIONS AMONG THE FIRST VARIATION, THE CONVOLUTIONS AND THE GENERALIZED FOURIER-GAUSS TRANSFORMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
RELATIONS AMONG THE FIRST VARIATION, THE CONVOLUTIONS AND THE GENERALIZED FOURIER-GAUSS TRANSFORMS
Im, Man-Kyu; Ji, Un-Cig; Park, Yoon-Jung;
  PDF(new window)
 Abstract
We first study the generalized Fourier-Gauss transforms of functionals defined on the complexification of an abstract Wiener space (, , ). Secondly, we introduce a new class of convolution products of functionals defined on and study several properties of the convolutions. Then we study various relations among the first variation the convolutions, and the generalized Fourier-Gauss transforms.
 Keywords
abstract Wiener space;generalized Fourier-Gauss transform;convolution;first variation;
 Language
English
 Cited by
1.
YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS,;;;

Journal of applied mathematics & informatics, 2013. vol.31. 5_6, pp.825-834 crossref(new window)
2.
SOME RELATIONSHIPS BETWEEN THE INTEGRAL TRANSFORM AND THE CONVOLUTION PRODUCT ON ABSTRACT WIENER SPACE,;;

East Asian mathematical journal, 2015. vol.31. 1, pp.135-144 crossref(new window)
1.
YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS, Journal of applied mathematics & informatics, 2013, 31, 5_6, 825  crossref(new windwow)
2.
SOME RELATIONSHIPS BETWEEN THE INTEGRAL TRANSFORM AND THE CONVOLUTION PRODUCT ON ABSTRACT WIENER SPACE, East Asian mathematical journal, 2015, 31, 1, 135  crossref(new windwow)
3.
Generalized Cameron–Storvick theorem and its applications, Integral Transforms and Special Functions, 2017, 1  crossref(new windwow)
4.
STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS, Journal of the Chungcheong Mathematical Society, 2016, 29, 2, 337  crossref(new windwow)
5.
SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE, Journal of the Korean Mathematical Society, 2016, 53, 6, 1261  crossref(new windwow)
6.
Relationships for modified generalized integral transforms, modified convolution products and first variations on function space, Integral Transforms and Special Functions, 2014, 25, 10, 790  crossref(new windwow)
7.
Double integral transforms and double convolution products of functionals on abstract Wiener space, Integral Transforms and Special Functions, 2013, 24, 11, 922  crossref(new windwow)
8.
Factorization property of convolutions of white noise operators, Indian Journal of Pure and Applied Mathematics, 2015, 46, 4, 463  crossref(new windwow)
 References
1.
R. H. Cameron, Some examples of Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 485-488. crossref(new window)

2.
R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924. crossref(new window)

3.
R. H. Cameron and W. T. Martin, Fourier-Wiener transforms of analytic functionals, Duke Math. J. 12 (1945), 489-507. crossref(new window)

4.
R. H. Cameron and D. A. Storvick, An $L_2$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1-30. crossref(new window)

5.
D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23.

6.
D. M. Chung, Transformation groups on white noise functionals and their applications, Appl. Math. Optim. 37 (1998), no. 2, 205-223. crossref(new window)

7.
L. Gross, Potential theory on Hilbert space, J. Funct. Anal. 1 (1967), 123-181. crossref(new window)

8.
T. Hida, Analysis of Brownian Functionals, Carleton Mathematical Lecture Notes, No. 13. Carleton Univ., Ottawa, Ont., 1975.

9.
T. Hida, H. H. Kuo, and N. Obata, Transformations for white noise functionals, J. Funct. Anal. 111 (1993), no. 2, 259-277. crossref(new window)

10.
T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661-673. crossref(new window)

11.
U. C. Ji and N. Obata, Quantum white noise calculus, Non-commutativity, infinite-dimensionality and probability at the crossroads, 143-191, QP-PQ: Quantum Probab. White Noise Anal., 16, World Sci. Publ., River Edge, NJ, 2002.

12.
U. C. Ji and N. Obata, Bogoliubov transformations in terms of generalized Fourier-Gauss transformations, preprint, 2008.

13.
H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics, Vol. 463. Springer-Verlag, Berlin-New York, 1975.

14.
H. H. Kuo, White Noise Distribution Theory, CRC Press, Boca Raton, FL, 1996.

15.
Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), no. 2, 153-164. crossref(new window)

16.
N. Obata, White Noise Calculus and Fock Space, Lecture Notes in Mathematics, 1577. Springer-Verlag, Berlin, 1994.

17.
J. Yeh, Convolution in Fourier-Wiener transform, Pacific J. Math. 15 (1965), 731-738. crossref(new window)

18.
I. Yoo, Convolution and the Fourier-Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), no. 4, 1577-1587. crossref(new window)