JOURNAL BROWSE
Search
Advanced SearchSearch Tips
A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
A STRONG LIMIT THEOREM FOR SEQUENCES OF BLOCKWISE AND PAIRWISE m-DEPENDENT RANDOM VARIABLES
Le, Van Thanh; Vu, Ngoc Anh;
  PDF(new window)
 Abstract
In this paper, we establish a Marcinkiewicz-Zygmund type strong law for sequences of blockwise and pairwise m-dependent random variables. The sharpness of the results is illustrated by an example.
 Keywords
blockwise quasiorthogonal random variables;blockwise and pairwise m-dependent random variables;strong law of large numbers;
 Language
English
 Cited by
 References
1.
A. Adler, A. Rosalsky, and R. L. Taylor, Some strong laws of large numbers for sums of random elements, Bull. Inst. Math. Acad. Sinica 20 (1992), no. 4, 335-357.

2.
A. Bose and T. K. Chandra, Cesaro uniform integrability and $L_p$ convergence, Sankhya Ser. A 55 (1993), 12-28.

3.
T. K. Chandra and A. Goswami, Cesaro uniform integrability and the strong law of large numbers, Sankhya Ser. A 54 (1992), 215-231.

4.
B. D. Choi and S. H. Sung, On convergence of ($S_n-ES_n)/n^{1/r}$, 1 < r < 2, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), no. 2, 79-82.

5.
S. Csorgo, K. Tandori, and V. Totik, On the strong law of large numbers for pairwise independent random variables, Acta Math. Hungar. 42 (1983), no. 3-4, 319-330. crossref(new window)

6.
E. B. Czerebak-Mrozowicz, O. I. Klesov, and Z. Rychlik, Marcinkiewicz-type strong law of large numbers for pairwise independent random fields, Probab. Math. Statist. 22 (2002), no. 1, Acta Univ. Wratislav. No. 2409, 127-139.

7.
N, Etemadi, An elementary proof of the strong law of large numbers, Z. Wahrsch. Verw. Gebiete 55 (1981), no. 1, 119-122. crossref(new window)

8.
I. Fazekas and T. Tomacs, Strong laws of large numbers for pairwise independent random variables with multidimensional indices, Publ. Math. Debrecen 53 (1998), no. 1-2, 149-161.

9.
V. F. Gaposhkin, On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables, Theory Probab. Appl. 39 (1995), 667-684.

10.
S. Geisser and N. Mantel, Pairwise independence of jointly dependent variables, Ann. Math. Statist. 33 (1962), 290-291. crossref(new window)

11.
M. Harber, Testing for pairwise independence, Biometrics, 42 (1986), 429-435. crossref(new window)

12.
D. H. Hong and S. Y. Hwang, Marcinkiewicz-type strong law of large numbers for double arrays of pairwise independent random variables, Int. J. Math. Math. Sci. 22 (1999), no. 1, 171-177. crossref(new window)

13.
T. C. Hu, On pairwise independent and independent exchangeable random variables, Stochastic Anal. Appl. 15 (1997), no. 1, 51-57. crossref(new window)

14.
V. M. Kruglov, Growth of sums of pairwise independent random variables with infinite means, Theory Probab. Appl. 51 (2007), no. 2, 359-362. crossref(new window)

15.
V. M. Kruglov, A strong law of large numbers for pairwise independent identically distributed random variables with infinite means, Statist. Probab. Lett. 78 (2008), no. 7, 890-895. crossref(new window)

16.
D. Li, A. Rosalsky, and A. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), no. 2, 281-305.

17.
D. Li and X. C. Wang, Strong limit theorems for blockwise mdependent random variables and a generalization of the conjectures of Moricz, Chinese Ann. Math. Ser. B 12 (1991), no. 2, 192-201.

18.
A. Martikainen, On the strong law of large numbers for sums of pairwise independent random variables. Statist, Probab. Lett. 25 (1995), no. 1, 21-26. crossref(new window)

19.
F. Moricz, SLLN and convergence rates for nearly orthogonal sequences of random variables, Proc. Amer. Math. Soc. 95 (1985), no. 2, 287-294.

20.
F. Moricz, Strong limit theorems for blockwise m-dependent and blockwise quasi-orthogonal sequences of random variables, Proc. Amer. Math. Soc. 101 (1987), no. 4, 709-715.

21.
G. L. O'Brien, Pairwise independent random variables, Ann. Probab. 8 (1980), no. 1,170-175. crossref(new window)

22.
A. Rosalsky, Strong stability of normed weighted sums of pairwise i.i.d. random variables, Bull. Inst. Math. Acad. Sinica 15 (1987), no. 2, 203-219.

23.
A. Rosalsky and L. V. Thanh, On the strong law of large numbers for sequences of blockwise independent and blockwise p-orthogonal random elements in Rademacher type p Banach spaces, Probab. Math. Statist. 27 (2007), no. 2, 205-222.

24.
S. H. Sung, S. Lisawadi, and A. Volodin, Weak laws of large numbers for arrays under a condition of uniform integrability, J. Korean Math. Soc. 45 (2008), no. 1, 289-300. crossref(new window)

25.
L. V. Thanh, Strong laws of large numbers for sequences of blockwise and pairwise m-dependent random variables, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 4, 397-405.

26.
L. V. Thanh, On the Brunk-Chung type strong law of large numbers for sequences of blockwise m-dependent random variables, ESAIM Probab. Stat. 10 (2006), 258-268. crossref(new window)

27.
D. Wei and R. L. Taylor, Convergence of weighted sums of tight random elements, J. Multivariate Anal. 8 (1978), no. 2, 282-294. crossref(new window)

28.
A. Wigderson, The amazing power of paiwise independence, Proceedings of the twentysixth annual ACM symposium on Theory of Computing, Stoc. (1994), 645-647, Montreal, Canada.