JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SEMI-DIVISORIALITY OF HOM-MODULES AND INJECTIVE COGENERATOR OF A QUOTIENT CATEGORY
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SEMI-DIVISORIALITY OF HOM-MODULES AND INJECTIVE COGENERATOR OF A QUOTIENT CATEGORY
Kim, Hwan-Koo;
  PDF(new window)
 Abstract
In this paper, we study w-ity and (co-)semi-divisoriality of Hom-modules and the semi-divisorial envelope of (M,N) under suitable conditions on R, M, and N. We also investigate an injective cogenerator of a quotient category.
 Keywords
(co-)semi-divisorial;w-null;cogenerator;Hom-module;H-domain;Krull domain;torsion theory;
 Language
English
 Cited by
 References
1.
I. Beck, Injective modules over a Krull domain, J. Algebra 17 (1971), 116-131. crossref(new window)

2.
L. Fuchs and L. Salce, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs 84, AMS, Providence, RI, 2001.

3.
R. Gilmer, Multiplicative Ideal Theory, Queen's Papers in Pure and Applied Mathematics, 90, Queen's University, Kingston, Ontario, 1992.

4.
S. Glaz and W. V. Vasconcelos, Flat ideals II, Manuscripta Math. 22 (1977), no. 4, 325-341. crossref(new window)

5.
S. Glaz and W. V. Vasconcelos, Flat ideals III, Comm. Algebra 12 (1984), no. 1-2, 199-227. crossref(new window)

6.
J. S. Golan, Localizations of Noncommutative Rings, Marcel Dekker, New York, 1975.

7.
H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra, 36 (2008), no. 5, 1649-1670. crossref(new window)

8.
H. Kim, Module-theoretic characterizations of generalized GCD domains, Comm. Algebra, 38 (2010), no. 2, 759-772. crossref(new window)

9.
H. Kim, E. S. Kim, and Y. S. Park, Injective modules over strong Mori domains, Houston J. Math. 34 (2008), no. 2, 349-360.

10.
J. L. B. Montero, B. T. Jover, and A. Verschoren, Local Cohomology and Localization, Pitman Research Notes in Mathematics Series, 226, Longman Scientic & Technical, London, 1989.

11.
M. Moucouf, Some results on injective modules over a ring of Krull type, Comm. Algebra 33 (2005), no. 11, 4125-4133. crossref(new window)

12.
M. Nishi and M. Shinagawa, Codivisorial and divisorial modules over completely integrally closed domains. I, Hiroshima Math. J. 5 (1975), no. 2, 269-292.

13.
M. Nishi and M. Shinagawa, Codivisorial and divisorial modules over completely integrally closed domains. II, Hiroshima Math. J. 5 (1975), no. 3, 461-471.

14.
B. Stenstrom, Rings of Quotients: An Introduction to Methods of Ring Theory,Springer-Verlag, New York, 1973.

15.
R. G. Swan, Algebraic K-theory, Lecture notes in Math. 76, Springer-Verlarg, New York, 1968.

16.
F. Wang, On w-projective modules and w-at modules, Algebra Colloq. 4 (1997), no. 1, 111-120.

17.
F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285-1306. crossref(new window)