JOURNAL BROWSE
Search
Advanced SearchSearch Tips
VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
VARIABLE TIME-STEPPING HYBRID FINITE DIFFERENCE METHODS FOR PRICING BINARY OPTIONS
Kim, Hong-Joong; Moon, Kyoung-Sook;
  PDF(new window)
 Abstract
Two types of new methods with variable time steps are proposed in order to valuate binary options efficiently. Type I changes adaptively the size of the time step at each time based on the magnitude of the local error, while Type II combines two uniform meshes. The new methods are hybrid finite difference methods, namely starting the computation with a fully implicit finite difference method for a few time steps for accuracy then performing a -method during the rest of computation for efficiency. Numerical experiments for standard European vanilla, binary and American options show that both Type I and II variable time step methods are much more efficient than the fully implicit method or hybrid methods with uniform time steps.
 Keywords
option pricing;variable time steps;hybrid finite difference method;binary options;American options;
 Language
English
 Cited by
 References
1.
Y. Achdou and O. Pironneau, Computational Methods for Option Pricing, Frontiers in Applied Mathematics, 30. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2005.

2.
F. Black and M. Scholes, The pricing of options and corporate liabilities, Journal of Political Economy 81 (1973), 637-659. crossref(new window)

3.
D. J. Duffy, Finite Difference Methods in Financial Engineering, Wiley Finance Series. John Wiley & Sons, Ltd., Chichester, 2006.

4.
P. A. Forsyth and K. R. Vetzal, Quadratic convergence for valuing American options using a penalty method, SIAM J. Sci. Comput. 23 (2002), no. 6, 2095-2122. crossref(new window)

5.
M. B. Giles and B. Carter, Convergence analysis of Crank-Nicolson and Rannacher time-marching, J. Computat. Fiance 9 (2006), 89-112. crossref(new window)

6.
E. G. Haug, The Complete Guide to Option Pricing Formulas (2nd ed.), MaGraw-Hill, 2007.

7.
S. Heston and G. Zhou, On the rate of convergence of discrete-time contingent claims, Math. Finance 10 (2000), no. 1, 53-75. crossref(new window)

8.
D. J. Higham, An Introduction to Financial Option Valuation, Mathematics, stochastics and computation. Cambridge University Press, Cambridge, 2004.

9.
A. Q. M. Khaliq, D. A. Voss, and K. Kazmi, Adaptive ${\theta}-methods$ for pricing American options, J. Comput. Appl. Math. 222 (2008), no. 1, 210-227. crossref(new window)

10.
Y. K. Kwok, Mathematicsl Models of Financial Derivatives, Springer-Verlag Singapore, 1998.

11.
P. Lotstedt, J. Persson, L. von Sydow, and J. Tysk, Space-time adaptive finite difference method for European multi-asset options, Comput. Math. Appl. 53 (2007), no. 8, 1159-1180. crossref(new window)

12.
R. C. Merton, Theory of rational option pricing, Bell J. Econom. and Management Sci. 4 (1973), 141-183. crossref(new window)

13.
K.-S. Moon, R. Nochetto, T. von Petersdorff, and C. S. Zhang, A posteriori erroranalysis for parabolic variational inequalities, M2AN Math. Model. Numer. Anal. 41 (2007), no. 3, 485-511. crossref(new window)

14.
D. M. Pooley, K. R. Vetal, and P. A. Forsyth, Convergence remedies for non-smooth payoffs in option pricing, The Journal of Computational Finance 6 (2003), 25-40. crossref(new window)

15.
R. Rannacher, Finite element solution of diffusion problems with irregular data, Numer. Math. 43 (1984), no. 2, 309-327. crossref(new window)

16.
E. Reimer and M. Rubinstein, Unscrambling the binary code, Risk 4 (1991), 37-41.

17.
R. Seydel, Tools for Computational Finance, Springer Verlag:Berlin, 2003.

18.
D. Tavella and C. Randall, Pricing Financial Instruments: The finite difference method, John Wiley & Sons, 2000.

19.
P. Wilmott, J. Dewynne, and S. Howison, Option Pricing: Mathematical Models and Computation, Oxford Financial Press, 1993.