JOURNAL BROWSE
Search
Advanced SearchSearch Tips
EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
EXISTENCE AND ASYMPTOTIC STABILITY OF SOLUTIONS OF A PERTURBED FRACTIONAL FUNCTIONAL-INTEGRAL EQUATION WITH LINEAR MODIFICATION OF THE ARGUMENT
Darwish, Mohamed Abdalla; Henderson, Johnny; O'Regan, Donal;
  PDF(new window)
 Abstract
We study the solvability of a perturbed quadratic functional-integral equation of fractional order with linear modification of the argument. This equation is considered in the Banach space of real functions defined, bounded and continuous on an unbounded interval. Moreover, we will obtain some asymptotic characterization of solutions.
 Keywords
functional integral equation;fractional integral;perturbed;linear modification of the argument;existence;asymptotic behaviour;measure of noncompactness;Schauder fixed point principle;
 Language
English
 Cited by
1.
Global attractivity for fractional order delay partial integro-differential equations, Advances in Difference Equations, 2012, 2012, 1, 62  crossref(new windwow)
2.
Fractional semilinear equations with causal operators, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111, 1, 257  crossref(new windwow)
3.
Nonlocal Problem for Fractional Evolution Equations of Mixed Type with the Measure of Noncompactness, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
4.
The behaviour of measures of noncompactness in $$L^\infty ({\mathbb {R}}^n)$$ L ∞ ( R n ) with application to the solvability of functional integral equations, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017  crossref(new windwow)
5.
MEASURES OF NONCOMPACTNESS IN A SOBOLEV SPACE AND INTEGRO-DIFFERENTIAL EQUATIONS, Bulletin of the Australian Mathematical Society, 2016, 94, 03, 497  crossref(new windwow)
6.
Some generalizations of Darbo’s theorem and applications to fractional integral equations, Fixed Point Theory and Applications, 2016, 2016, 1  crossref(new windwow)
7.
Fractional order integral equations of two independent variables, Applied Mathematics and Computation, 2014, 227, 755  crossref(new windwow)
8.
Existence and stability results for nonlinear fractional order Riemann–Liouville Volterra–Stieltjes quadratic integral equations, Applied Mathematics and Computation, 2014, 247, 319  crossref(new windwow)
9.
Fixed point theorems for Meir-Keeler condensing operators via measure of noncompactness, Acta Mathematica Scientia, 2015, 35, 3, 552  crossref(new windwow)
10.
On Erdélyi–Kober fractional Urysohn–Volterra quadratic integral equations, Applied Mathematics and Computation, 2016, 273, 562  crossref(new windwow)
11.
Construction of measures of noncompactness of DC n [ J , E ] $\mathit{DC}^{n}[J,E]$ and C 0 n [ J , E ] $C^{n}_{0}[J,E]$ with application to the solvability of nth-order integro-differential equations in Banach spaces, Advances in Difference Equations, 2015, 2015, 1  crossref(new windwow)
12.
Existence of solutions of functional integral equations of convolution type using a new construction of a measure of noncompactness on Lp(R+), Applied Mathematics and Computation, 2015, 260, 140  crossref(new windwow)
13.
Asymptotically Stable Solutions of a Generalized Fractional Quadratic Functional-Integral Equation of Erdélyi-Kober Type, Journal of Function Spaces, 2014, 2014, 1  crossref(new windwow)
 References
1.
G. Anichini and G. Conti, Existence of solutions of some quadratic integral equations, Opuscula Math. 28 (2008), no. 4, 433-440.

2.
J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge Tracts in Mathematics 95, Cambridge University Press, 1990.

3.
I. K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Aust. Math. Soc. 32 (1985), no. 2, 275-292. crossref(new window)

4.
I. K. Argyros, On a class of quadratic integral equations with perturbation, Funct. Approx. Comment. Math. 20 (1992), 51-63.

5.
J. Banas, Measures of noncompactness in the space of continuous tempered functions, Demonstratio Math. 14 (1981), no. 1, 127-133.

6.
J. Banas, J. Caballero, J. Rocha, and K. Sadarangani, Monotonic solutions of a class of quadratic integral equations of Volterra type, Comput. Math. Appl. 49 (2005), no. 5-6, 943-952. crossref(new window)

7.
J. Banas and L. Olszowy, Measures of noncompactness related to monotonicity, Comment. Math. (Prace Mat.) 41 (2001), 13-23.

8.
J. Banas and D. O'Regan, On existence and local attractivity of solutions of a quadratic Volterra integral equation of fractional order, J. Math. Anal. Appl. 345 (2008), no. 1, 573-582. crossref(new window)

9.
V. C. Boffi and G. Spiga, An equation of Hammerstein type arising in particle transport theory, J. Math. Phys. 24 (1983), no. 6, 1625-1629. crossref(new window)

10.
V. C. Boffi and G. Spiga, Nonlinear removal effects in time-dependent particle transport theory, Z. Angew. Math. Phys. 34 (1983), no. 3, 347-357. crossref(new window)

11.
L. W. Busbridge, The Mathematics of Radiative Transfer, Cambridge Univ. Press, Cambridge, 1960.

12.
J. Caballero, D. O'Regan, and K. Sadarangani, On solutions of an integral equation related to traffic ow on unbounded domains, Arch. Math. (Basel) 82 (2004), no. 6, 551-563. crossref(new window)

13.
K. M. Case and P. F. Zweifel, Linear Transport Theory, Addison-Wesley, Reading, MA 1967.

14.
S. Chandrasekhar, Radiative Transfer, Oxford University Press, London, 1950.

15.
M. A. Darwish, On quadratic integral equation of fractional orders, J. Math. Anal. Appl. 311 (2005), no. 1, 112-119. crossref(new window)

16.
M. A. Darwish, On existence and asymptotic behaviour of solutions of a fractional integral equation, Appl. Anal. 88 (2009), no. 2, 169-181. crossref(new window)

17.
M. A. Darwish and J. Henderson, Existence and asymptotic stability of solutions of a perturbed quadratic fractional integral equation, Fract. Calc. Appl. Anal. 12 (2009), no. 1, 71-86.

18.
M. A. Darwish and K. Sadarangani, On existence and asymptotic stability of solutions of a functional-integral equation of fractional order, to appear J. Convex Anal.

19.
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.

20.
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000.

21.
S. Hu, M. Khavani, and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989), no. 3-4, 261-266. crossref(new window)

22.
C. T. Kelley, Approximation of solutions of some quadratic integral equations in transport theory, J. Integral Equations 4 (1982), no. 3, 221-237.

23.
A. A. Kilbas, H. M. Srivastava, and Juan J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006.

24.
L. Kurz, P. Nowosad, and B. R. Saltzberg, On the solution of a quadratic integral equation arising in signal design, J. Franklin Inst. 281 (1966), 437-454. crossref(new window)

25.
R. W. Leggett, A new approach to the H-equation of Chandrasekhar, SIAM J. Math. Anal. 7 (1976), no. 4, 542-550. crossref(new window)

26.
K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations, John Wiley, New York, 1993.

27.
I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.

28.
S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publs., Amsterdam, 1993.

29.
G. Spiga, R. L. Bowden, and V. C. Boffi, On the solutions to a class of nonlinear integral equations arising in transport theory, J. Math. Phys. 25 (1984), no. 12, 3444-3450. crossref(new window)

30.
C. A. Stuart, Existence theorems for a class of non-linear integral equations, Math. Z. 137 (1974), 49-66. crossref(new window)