JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MINIMAL NONCOMMUTATIVE REVERSIBLE AND REFLEXIVE RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MINIMAL NONCOMMUTATIVE REVERSIBLE AND REFLEXIVE RINGS
Kim, Byung-Ok; Lee, Yang;
  PDF(new window)
 Abstract
The reflexiveness and reversibility were introduced by Mason and Cohn respectively. The structures of minimal reversible rings and minimal reflexive rings are completely determined. The term minimal means having smallest cardinality.
 Keywords
minimal noncommutative reversible ring;minimal noncommutative reflexive ring;
 Language
English
 Cited by
1.
Ideal-Symmetric and Semiprime Rings, Communications in Algebra, 2013, 41, 12, 4504  crossref(new windwow)
2.
Reversible Rings with Involutions and Some Minimalities, The Scientific World Journal, 2013, 2013, 1  crossref(new windwow)
 References
1.
D. D. Anderson and V. Camillo, Semigroups and rings whose zero products commute, Comm. Algebra 27 (1999), no. 6, 2847-2852. crossref(new window)

2.
P. M. Cohn, Reversible rings, Bull. London Math. Soc. 31 (1999), no. 6, 641-648. crossref(new window)

3.
K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 376-377. crossref(new window)

4.
E. H. Feller, Properties of primary noncommutative rings, Trans. Amer. Math. Soc. 89 (1958), 79-91. crossref(new window)

5.
C. Huh, H. K. Kim, N. K. Kim, and Y. Lee, Basic examples and extensions of symmetric rings, J. Pure Appl. Algebra 202 (2005), no. 1-3, 154-167. crossref(new window)

6.
N. K. Kim and Y. Lee, Extensions of reversible rings, J. Pure Appl. Algebra 185 (2003), no. 1-3, 207-223. crossref(new window)

7.
R. Kruse and D. Price, Nilpotent Rings, Gordon and Breach, New York, 1969.

8.
T. K. Kwak and Y. Lee, Reflexive property of rings, submitted.

9.
T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.

10.
J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.

11.
G. Marks, Reversible and symmetric rings, J. Pure Appl. Algebra 174 (2002), no. 3, 311-318. crossref(new window)

12.
G. Mason, Reflexive ideals, Comm. Algebra 9 (1981), no. 17, 1709-1724. crossref(new window)

13.
W. Xue, On strongly right bounded finite rings, Bull. Austral. Math. Soc. 44 (1991), no. 3, 353-355. crossref(new window)

14.
W. Xue , Structure of minimal noncommutative duo rings and minimal strongly bounded nonduo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788. crossref(new window)