JOURNAL BROWSE
Search
Advanced SearchSearch Tips
SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
SOME STRONGLY NIL CLEAN MATRICES OVER LOCAL RINGS
Chen, Huanyin;
  PDF(new window)
 Abstract
An element of a ring is called strongly nil clean provided that it can be written as the sum of an idempotent and a nilpotent element that commute. A ring is strongly nil clean in case each of its elements is strongly nil clean. We investigate, in this article, the strongly nil cleanness of 22 matrices over local rings. For commutative local rings, we characterize strongly nil cleanness in terms of solvability of quadratic equations. The strongly nil cleanness of a single triangular matrix is studied as well.
 Keywords
matrix;strongly nil cleanness;local ring;
 Language
English
 Cited by
1.
Quasipolar Subrings of 3 x 3 Matrix Rings, Analele Universitatii "Ovidius" Constanta - Seria Matematica, 2013, 21, 3  crossref(new windwow)
2.
Nil clean rings, Journal of Algebra, 2013, 383, 197  crossref(new windwow)
3.
Nil-quasipolar rings, Boletín de la Sociedad Matemática Mexicana, 2014, 20, 1, 29  crossref(new windwow)
 References
1.
G. Borooah, A. J. Diesl, and T. J. Dorsey, Strongly clean matrix rings over commutative local rings, J. Pure Appl. Algebra 212 (2008), no. 1, 281-296. crossref(new window)

2.
H. Chen, Separative ideals, clean elements and unit-regularity, Comm. Algebra 34 (2006), no. 3, 911-921. crossref(new window)

3.
H. Chen, Clean matrices over commutative rings, Czechoslovak Math. J. 59(134) (2009), no. 1, 145-158. crossref(new window)

4.
H. Chen, On strongly J-clean rings, Comm. Algebra 38 (2011), no. 10, 3790-3804.

5.
W. Chen, A question on strongly clean rings, Comm. Algebra 34 (2006), no. 7, 2347-2350. crossref(new window)

6.
A. J. Diesl, Classes of Strongly Clean Rings, Ph D. Thesis, University of California, Berkeley, 2006.

7.
J. E. Humphreys, Introduction to Lie Algebra and Representation Theory, Springer-Verlag, Beijing, 2006.

8.
W. K. Nicholson, Clean rings: a survey, Advances in ring theory, 181-198, World Sci. Publ., Hackensack, NJ, 2005.

9.
X. Yang and Y. Zhou, Some families of strongly clean rings, Linear Algebra Appl. 425 (2007), no. 1, 119-129. crossref(new window)

10.
X. Yang and Y. Zhou, Strongly cleanness of the $2\times2$ matrix ring over a general local ring, J. Algebra 320 (2008), no. 6, 2280-2290. crossref(new window)