JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONTROLLABILITY OF SECOND ORDER SEMI-LINEAR NEUTRAL IMPULSIVE DIFFERENTIAL INCLUSIONS ON UNBOUNDED DOMAIN WITH INFINITE DELAY IN BANACH SPACES
Chalishajar, Dimplekumar N.; Acharya, Falguni S.;
  PDF(new window)
 Abstract
In this paper, we prove sufficient conditions for controllability of second order semi-linear neutral impulsive differential inclusions on unbounded domain with infinite delay in Banach spaces using the theory of strongly continuous Cosine families. We shall rely on a fixed point theorem due to Ma for multi-valued maps. The controllability results in infinite dimensional space has been proved without compactness on the family of Cosine operators.
 Keywords
controllability;semi-linear neutral impulsive inclusions;convex multi-valued map;fixed point;
 Language
English
 Cited by
1.
Controllability of Neutral Impulsive Differential Inclusions with Non-Local Conditions, Applied Mathematics, 2011, 02, 12, 1486  crossref(new windwow)
2.
Controllability of Second Order Impulsive Neutral Functional Differential Inclusions with Infinite Delay, Journal of Optimization Theory and Applications, 2012, 154, 2, 672  crossref(new windwow)
3.
Approximate Controllability of Fractional Neutral Evolution Equations in Banach Spaces, Abstract and Applied Analysis, 2013, 2013, 1  crossref(new windwow)
4.
Solvability of impulsive partial neutral second-order functional integro-differential equations with infinite delay, Boundary Value Problems, 2013, 2013, 1, 203  crossref(new windwow)
5.
Existence of Semi Linear Impulsive Neutral Evolution Inclusions with Infinite Delay in Frechet Spaces, Mathematics, 2016, 4, 2, 23  crossref(new windwow)
6.
Second-Order Impulsive Differential Equations with Functional Initial Conditions on Unbounded Intervals, Journal of Function Spaces and Applications, 2013, 2013, 1  crossref(new windwow)
 References
1.
J. Banas and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel-Dekker, New York, 1980.

2.
M. Benchohra and S. K. Ntouyas, Controllability for functional differential and integrodifferential inclusions in Banach spaces, J. Optim. Theory Appl. 113 (2002), no. 3, 449-472. crossref(new window)

3.
M. Benchohra and S. K. Ntouyas, Controllability results for multivalued semilinear neutral functional equations, Math. Sci. Res. J. 6 (2002), no. 2, 65-77.

4.
M. Benchohra and S. K. Ntouyas, Existence and controllability results for nonlinear differential inclusions with nonlocal conditions in Banach spaces, J. Appl. Anal. 8 (2002), no. 1, 33-48. crossref(new window)

5.
M. Benchohra and S. K. Ntouyas, On second order impulsive functional differential equations in Banach spaces, J. Appl. Math. Stoch. Anal. 15 (2002), no. 1, 47-55.

6.
J. Bochenek, An abstract nonlinear second-order differential equation, Ann. Polon. Math. 54 (1991), no. 2, 155-166.

7.
D. N. Chalishajar, Controllability of nonlinear integro-differential third order dispersion system, J. Math. Anal. Appl. 348 (2008), no. 1, 480-486. crossref(new window)

8.
D. N. Chalishajar and F. S. Acharya, Controllability of nonlinear integro-differential third order dispersion inclusions in Banach spaces, Nonl. Anal. TMA, Communicated.

9.
D. N. Chalishajar, R. K. George, and A. K. Nandakumaran, Exact controllability of the nonlinear third-order dispersion equation, J. Math. Anal. Appl. 332 (2007), no. 2, 1028-1044. crossref(new window)

10.
K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin, 1992.

11.
J. Dugunji and A. Granas, Fixed Point Theory. I, Monografic. Math. PWN Warsaw, 1982.

12.
R. K. George, D. N. Chalishajar, and A. K. Nandakumaran, Contollability of second order semi-linear neutral functional differential inclusions in Banach spaces, Mediterr. J. Math. 99 (2004), 1-16.

13.
J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Uni. Press, New-York, 1985.

14.
A. Granas and J. Dugunji, Fixed Point Theory, Springer-Verlag, New-York, 2003.

15.
E. M. Hernandez, M. Rabello, and H. Henriquez, Existence of solutions of impulsive partial neutral functional differential equations, J. Math. Anal. Appl. 331 (2007), 1135-1158. crossref(new window)

16.
Sh. Hu and N. S. Papageogiou, Handbook of Multivalued Analysis, Kluwer Dordrecht, 1997.

17.
J. Kisynski, On second order Cauchy problem in a Banach space, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 18 (1970), 371-374.

18.
A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786.

19.
B. Liu, Controllability of impulsive neutral functional differential inclusions with infinite delay, Nonlinear Anal. 60 (2005), no. 8, 1533-1552. crossref(new window)

20.
T. W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Dissertationess Math. 92 (1972), 1-43.

21.
S. K. Ntouyas and P. Ch. Tsamatos, Global existence of semilinear evolution equations with nonlocal conditions, J. Math. Anal. Appl. 210 (1996), 679-687.

22.
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New-York, 1983.

23.
M. D. Quinn and N. Carmichael, An introduction to nonlinear control problems using fixed point methods, degree theory and pseudo-inverse, Numer. Funct. Anal. Optim. 7 (1984/1985), 197-219. crossref(new window)

24.
A. M. Samoilenko and N. A. Perestyuk, Impulsive Differntial Equations, World Scientific, Singapore, 1995.

25.
H. Schaefer, Uber die method der a priori Schranken, Math. Anal. 129 (1955), 415-416. crossref(new window)

26.
C. C. Travis and G. F. Webb, Cosine families and abstract nonlinear second-order differential equations, Acta Math. Acad. Sci. Hungar. 32 (1978), no. 1-2, 75-96. crossref(new window)

27.
C. C. Travis and G. F. Webb, Second order differential equations in Banach spaces, Proc. Int. Symp. on Nonlinear Equations in Abstract spaces, 331-361, Academic Press New-York, 1978.

28.
R. Triggani, Addendum : A note on lack of exact controllability for mild solution in Banach spaces, SIAM J. cont. Opti. 15 (1977), 407-411. crossref(new window)

29.
R. Triggani, Addendum : A note on lack of exact controllability for mild solution in Banach spaces, SIAM J. Cont. Opti. 18 (1980), no. 1, 98-99. crossref(new window)

30.
K. Yosida, Functional Analysis, 6th Edition, Springer-Verlag, Berlin, 1980.