JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVOLUTIONS OF WHITE NOISE OPERATORS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVOLUTIONS OF WHITE NOISE OPERATORS
Ji, Un-Cig; Kim, Young-Yi;
  PDF(new window)
 Abstract
Motivated by the convolution product of white noise functionals, we introduce a new notion of convolution products of white noise operators. Then we study several interesting relations between the convolution products and the quantum generalized Fourier-Mehler transforms, and study a quantum-classical correspondence.
 Keywords
white noise operator;Wick product;convolution;quantum generalized Fourier-Mehler transform;
 Language
English
 Cited by
1.
YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS,;;;

Journal of applied mathematics & informatics, 2013. vol.31. 5_6, pp.825-834 crossref(new window)
2.
STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS,;

충청수학회지, 2016. vol.29. 2, pp.337-346 crossref(new window)
1.
YEH CONVOLUTION OF WHITE NOISE FUNCTIONALS, Journal of applied mathematics & informatics, 2013, 31, 5_6, 825  crossref(new windwow)
2.
STOCHASTIC DIFFERENTIAL EQUATION FOR WHITE NOISE FUNCTIONALS, Journal of the Chungcheong Mathematical Society, 2016, 29, 2, 337  crossref(new windwow)
3.
Factorization property of convolutions of white noise operators, Indian Journal of Pure and Applied Mathematics, 2015, 46, 4, 463  crossref(new windwow)
 References
1.
M. Ben Chrouda, M. El Ouled, and H. Ouerdiane, Quantum stochastic processes and applications, Quantum probability and infinite dimensional analysis, 115-125, QP-PQ: Quantum Probab. White Noise Anal., 18, World Sci. Publ., Hackensack, NJ, 2005.

2.
D. M. Chung and U. C. Ji, Transforms on white noise functionals with their applications to Cauchy problems, Nagoya Math. J. 147 (1997), 1-23. crossref(new window)

3.
D. M. Chung and U. C. Ji, Transformation groups on white noise functionals and their applications, Appl. Math. Optim. 37 (1998), no. 2, 205-223. crossref(new window)

4.
D. M. Chung, U. C. Ji, and N. Obata, Quantum stochastic analysis via white noise operators in weighted Fock space, Rev. Math. Phys. 14 (2002), no. 3, 241-272. crossref(new window)

5.
T. Hida, Analysis of Brownian Functionals, Carleton Math. Lect. Notes no. 13, Carleton University, Ottawa, 1975.

6.
R. L. Hudson and K. R. Parthasarathy, Quantum Ito's formula and stochastic evolu- tions, Comm. Math. Phys. 93 (1984), no. 3, 301-323. crossref(new window)

7.
U. C. Ji, Quantum extensions of Fourier-Gauss and Fourier-Mehler transforms, J. Korean Math. Soc. 45 (2008), no. 6, 1785-1801. crossref(new window)

8.
U. C. Ji and N. Obata, Quantum white noise calculus, in "Non-Commutativity, Infinite- Dimensionality and Probability at the Crossroads (N. Obata, T. Matsui and A. Hora, Eds.)," pp. 143-191, World Scientific, 2002.

9.
U. C. Ji and N. Obata, A unified characterization theorem in white noise theory, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003), no. 2, 167-178. crossref(new window)

10.
U. C. Ji and N. Obata, Annihilation-derivative, creation-derivative and representation of quantum martingales, Comm. Math. Phys. 286 (2009), no. 2, 751-775. crossref(new window)

11.
H.-H. Kuo, White Noise Distribution Theory, CRC Press, 1996.

12.
P.-A. Meyer, Quantum Probability for Probabilists, Lect. Notes in Math. Vol. 1538, Springer-Verlag, 1993.

13.
N. Obata, White Noise Calculus and Fock Space, Lect. Notes in Math. Vol. 1577, Springer-Verlag, 1994.

14.
N. Obata, An analytic characterization of symbols of operators on white noise functionals, J. Math. Soc. Japan 45 (1993), no. 3, 421-445. crossref(new window)

15.
K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Birkhauser, 1992.