JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON FIXED POINTS ON COMPACT RIEMANN SURFACES
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON FIXED POINTS ON COMPACT RIEMANN SURFACES
Gromadzki, Grzegorz;
  PDF(new window)
 Abstract
A point of a Riemann surface X is said to be its fixed point if it is a fixed point of one of its nontrivial holomorphic automorphisms. We start this note by proving that the set Fix(X) of fixed points of Riemann surface X of genus g2 has at most 82(g-1) elements and this bound is attained just for X having a Hurwitz group of automorphisms, i.e., a group of order 84(g-1). The set of such points is invariant under the group of holomorphic automorphisms of X and we study the corresponding symmetric representation. We show that its algebraic type is an essential invariant of the topological type of the holomorphic action and we study its kernel, to find in particular some sufficient condition for its faithfulness.
 Keywords
automorphisms of Riemann surfaces;fixed point;Fuchsia groups;symmetric representation;
 Language
English
 Cited by
 References
1.
E. Bujalance, G. Gromadzki, and E. Tyszkowska, On fixed points of involutions of compact Riemann surfaces, Math. Scand. 105 (2009), no. 1, 16-24. crossref(new window)

2.
G. Castelnuovo, Ricerche de geometria sulle curve algebriche, Atti Acad. Sci. Torino 24 (1889), 346-373. (Memorie Scelte, Zanichelli Bologna, 1937, 19-44).

3.
H. M. Farkas and I. Kra, Riemann Surfaces, Graduate Text in Mathematics, Springer- Verlag, 1980.

4.
A. Garcia, Remarks on fixed points of automorphisms and higher-order Weierstrass points in prime characteristic, Manuscripta Math. 69 (1990), no. 3, 301-303. crossref(new window)

5.
G. Gromadzki, On conjugacy of p-gonal automorphisms of Riemann surfaces, Rev. Mat. Complut. 21 (2008), no. 1, 83-87.

6.
G. Gromadzki, On the number of p-gonal coverings of Riemann surfaces, Rocky Mountain Journal of Mathematics 40 (2010), no. 4, 1221-1226. crossref(new window)

7.
R. Horiuchi and T. Tanimoto, Fixed points of automorphisms of compact Riemann surfaces and higher-order Weierstrass points, Proc. Amer. Math. Soc. 105 (1989), no. 4, 856-860. crossref(new window)

8.
J. Lewittes, Automorphisms of compact Riemann surfaces, Amer. J. Math. 85 (1963), no. 4, 734-752. crossref(new window)

9.
A. M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. London Math. Soc. 5 (1973), 103-108. crossref(new window)

10.
K. Magaard and H. Volklein, On Weierstrass points of Hurwitz curves, J. Algebra 300 (2006), no. 2, 647-654. crossref(new window)

11.
M. J. Moore, Fixed points of automorphisms of compact Riemann surfaces, Canad. J. Math. 22 (1970), no. 5, 922-932. crossref(new window)

12.
F. Severi, Vorlesungen uber algebraische Geometrie, Teubner, Leipzig, 1921.

13.
C. L. Siegel, Some remarks on discontinuous groups, Ann. of Math. (2) 46 (1945), 708-718. crossref(new window)