JOURNAL BROWSE
Search
Advanced SearchSearch Tips
APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES IN β-NORMED LEFT BANACH MODULE ON BANACH ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES IN β-NORMED LEFT BANACH MODULE ON BANACH ALGEBRAS
Gordji, Majid Eshaghi; Khodaei, Hamid; Najati, Abbas;
  PDF(new window)
 Abstract
Let M = {1, 2, , n} and let V = {}. Denote M\I by for . The goal of this paper is to investigate the solution and the stability using the alternative fixed point of generalized cubic functional equation in -Banach modules on Banach algebras, where with and .
 Keywords
cubic functional equation;generalized Hyers-Ulam stability;Banach module;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

2.
V. K. Balachandran, Topological Algebras, Narosa Publishing House, New Delhi, Madras, Bombay, Calcutta, London, 1999.

3.
L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Iteration theory (ECIT '02), 43-52, Grazer Math. Ber., 346, Karl-Franzens- Univ. Graz, Graz, 2004.

4.
P. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific Publishing Company, New Jersey, Hong Kong, Singapore, London, 2002.

5.
M. Eshaghi Gordji and H. Khodaei, Solution and stability of generalized mixed type cubic, quadratic and additive functional equation in quasi-Banach spaces, Nonlinear Anal. 71 (2009), no. 11, 5629-5643. crossref(new window)

6.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. crossref(new window)

7.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

8.
D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224. crossref(new window)

9.
D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhaser, Basel, 1998.

10.
K. W. Jun and H. M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 267-278.

11.
K. W. Jun and H. M. Kim, Ulam stability problem for a mixed type of cubic and additive functional equa- tion, Bull. Belg. Math. Soc. Simon Stevin 13 (2006), no. 2, 271-285.

12.
K. W. Jun and H. M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl. 332 (2007), no. 2, 1335-1350. crossref(new window)

13.
K. W. Jun, H. M. Kim, and I. S. Chang, On the Hyers-Ulam stability of an Euler- Lagrange type cubic functional equation, J. Comput. Anal. Appl. 7 (2005), no. 1, 21-33.

14.
K. Jun and S. Lee, On the generalized Hyers-Ulam stability of a cubic functional equa- tion, J. Chungcheong Math. Soc. 19 (2006), no. 2, 189-196.

15.
H. Khodaei and Th. M. Rassias, Approximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl. 1 (2010), 22-41.

16.
B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (1968), 305-309. crossref(new window)

17.
A. Najati, Hyers-Ulam-Rassias stability of a cubic functional equation, Bull. Korean Math. Soc. 44 (2007), no. 4, 825-840. crossref(new window)

18.
A. Najati and F. Moradlou, Stability of an Euler-Lagrange type cubic functional equa- tion, Turkish J. Math. 33 (2009), no. 1, 65-73.

19.
A. Najati and F. Moradlou, Stability of a mixed additive, quadratic and cubic functional equation in quasi- Banach spaces, Aust. J. Math. Anal. Appl. 5 (2008), no. 2, Article 10, 21 pp.

20.
A. Najati and C. Park, On the stability of a cubic functional equation, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 12, 1953-1964. crossref(new window)

21.
A. Najati and G. Zamani Eskandani, Stability of a mixed additive and cubic functional equation in quasi-Banach spaces, J. Math. Anal. Appl. 342 (2008), no.2, 1318-1331. crossref(new window)

22.
V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), no. 1, 91-96.

23.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. crossref(new window)

24.
Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), no. 2, 352-378. crossref(new window)

25.
Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000), no. 1, 23-130. crossref(new window)

26.
S. M. Ulam, Problems in Modern Mathematics, Chapter VI, science Editions., Wiley, New York, 1964.