JOURNAL BROWSE
Search
Advanced SearchSearch Tips
CONVERGENCE OF THE NEWTON'S METHOD FOR AN OPTIMAL CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
CONVERGENCE OF THE NEWTON'S METHOD FOR AN OPTIMAL CONTROL PROBLEMS FOR NAVIER-STOKES EQUATIONS
Choi, Young-Mi; Kim, Sang-Dong; Lee, Hyung-Chun;
  PDF(new window)
 Abstract
We consider the Newton's method for an direct solver of the optimal control problems of the Navier-Stokes equations. We show that the finite element solutions of the optimal control problem for Stoke equations may be chosen as the initial guess for the quadratic convergence of Newton's algorithm applied to the optimal control problem for the Navier-Stokes equations provided there are sufficiently small mesh size h and the moderate Reynold's number.
 Keywords
Navier-Stokes equations;optimal control;convergence;finite element method;Newton's method;
 Language
English
 Cited by
 References
1.
P. B. Bochev, Z. Cai, T. A. Manteuffel, and S. F. McCormick, Analysis of velocity-ux first-order system least-squares principles for the Navier-Stokes equations. I, SIAM J. Numer. Anal. 35 (1998), no. 3, 990-1009. crossref(new window)

2.
F. Brezzi, J. Rappaz, and P. A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions, Numer. Math. 36 (1980/81), no. 1, 1-25.

3.
P. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

4.
V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Springer, Berlin, 1986.

5.
S. D. Kim, Y. H. Lee, and B. C. Shin, Newton's method for the Navier-Stokes equations with finite-element initial guess of Stokes equations, Comput. Math. Appl. 51 (2006), no. 5, 805-816. crossref(new window)

6.
D. A. Knoll and V. A. Mousseau, On Newton-Krylov multigrid methods for the incom- pressible Navier-Stokes equations, J. Comput. Phys. 163 (2000), 262-267. crossref(new window)

7.
D. A. Knoll and W. Rider, A multigrid preconditioned Newton-Krylov method, SIAM J. Sci. Comput. 21 (1999), no. 2, 691-710. crossref(new window)

8.
M. Pernice and M. D. Tocci, A multigrid-preconditioned Newton-Krylov Method for the incompressible Navier-Stokes equations, SIAM J. Sci. Comput. 23 (2001), no. 2, 398-418. crossref(new window)