JOURNAL BROWSE
Search
Advanced SearchSearch Tips
L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
L2-ERROR ANALYSIS OF FULLY DISCRETE DISCONTINUOUS GALERKIN APPROXIMATIONS FOR NONLINEAR SOBOLEV EQUATIONS
Ohm, Mi-Ray; Lee, Hyun-Young;
  PDF(new window)
 Abstract
In this paper, we develop a symmetric Galerkin method with interior penalty terms to construct fully discrete approximations of the solution for nonlinear Sobolev equations. To analyze the convergence of discontinuous Galerkin approximations, we introduce an appropriate projection and derive the optimal error estimates.
 Keywords
nonlinear Sobolev equation;discontinuous Galerkin approximation;fully discrete approximations;optimal error estimates;
 Language
English
 Cited by
1.
A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS,;;

East Asian mathematical journal, 2016. vol.32. 5, pp.729-744 crossref(new window)
2.
A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS,;;

Journal of applied mathematics & informatics, 2016. vol.34. 1_2, pp.19-34 crossref(new window)
1.
A SPLIT LEAST-SQUARES CHARACTERISTIC MIXED FINITE ELEMENT METHOD FOR THE CONVECTION DOMINATED SOBOLEV EQUATIONS, Journal of applied mathematics & informatics, 2016, 34, 1_2, 19  crossref(new windwow)
2.
A CRANK-NICOLSON CHARACTERISTIC FINITE ELEMENT METHOD FOR SOBOLEV EQUATIONS, East Asian mathematical journal, 2016, 32, 5, 729  crossref(new windwow)
 References
1.
D. N. Arnold, An interior penalty nite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 724-760.

2.
D. N. Arnold, J. Jr. Douglas, and V. Thomee, Superconvergence of a nite approximation to the solution of a Sobolev equation in a single space variable, Math. Comp. 36 (1981), 53-63. crossref(new window)

3.
I. Babuska and M. Suri, The h-p version of the nite element method with quasi-uniform meshes, RAIRO Model. Math. Anal. Numer. 21 (1987), no. 2, 199-238.

4.
I. Babuska and M. Suri, The optimal convergence rates of the p-version of the nite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750-776. crossref(new window)

5.
G. I. Barenblatt, I. P. Zheltov, and I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in ssured rocks, J. Appl. Math. Mech. 23 (1960), 1286-1303.

6.
R. W. Carroll and R. E. Showalter, Singular and Degenerate Cauchy Problems, Math-ematics in Sciences and Engineering, Vol. 127, Academic Press, New York, 1976.

7.
P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew Math. Phys. (1968), 614-627.

8.
P. L. Davis, A quasilinear parabolic and a related third order problem, J. Math. Anal. Appl. 40 (1972), 327-335. crossref(new window)

9.
R. E. Ewing, The approximation of certain parabolic equations backward in time by Sobolev equations, SIAM J. Math. Anal. 6 (1975), 283-294. crossref(new window)

10.
R. E. Ewing, Time-stepping Galerkin methods for nonlinear Sobolev partial differential equa- tions, SIAM J. Numer. Anal. 15 (1978), no. 6, 1125-1150. crossref(new window)

11.
W. H. Ford and T. W. Ting, Stability and convergence of difference approximations to pseudo-parabolic partial differential equations, Math. Comput. 27 (1973), 737-743. crossref(new window)

12.
W. H. Ford and T. W. Ting, Uniform error estimates for difference approximations to nonlinear pseudo- parabolic partial differential equations, SIAM J. Numer. Anal. 11 (1974), 155-169. crossref(new window)

13.
Y. Lin, Galerkin methods for nonlinear Sobolev equations, Aequationes Math. 40 (1990), no. 1, 54-66. crossref(new window)

14.
Y. Lin and T. Zhang, Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions, J. Math. Anal. Appl. 165 (1992), no. 1, 180-191. crossref(new window)

15.
M. T. Nakao, Error estimates of a Galerkin method for some nonlinear Sobolev equa- tions in one space dimension, Numer. Math. 47 (1985), no. 1, 139-157. crossref(new window)

16.
M. R. Ohm, H. Y. Lee, and J. Y. Shin, Error estimates for discontinuous Galerkin method for nonlinear parabolic equations, J. Math. Anal. Appl. 315 (2006), no. 1, 132- 143. crossref(new window)

17.
M. R. Ohm, H. Y. Lee, and J. Y. Shin, $L^2$-error analysis of discontinuous Galerkin approximations for nonlinear Sobolev equations, submitted.

18.
T. Sun and D. Yang, A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations, Appl. Math. Comput. 200 (2008), no. 1, 147-159. crossref(new window)

19.
T. Sun and D. Yang, Error estimates for a discontinuous Galerkin method with interior penalties applied to nonlinear Sobolev equations, Numer. Methods Partial Differential Equations 24 (2008), no. 3, 879-896. crossref(new window)

20.
T. W. Ting, A cooling process according to two-temperature theory of heat conduction, J. Math. Anal. Appl. 45 (1974), 289-303.

21.
M. F. Wheeler, A priori $L_2$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723-759. crossref(new window)