JOURNAL BROWSE
Search
Advanced SearchSearch Tips
MATCHING THEOREMS AND SIMULTANEOUS RELATION PROBLEMS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
MATCHING THEOREMS AND SIMULTANEOUS RELATION PROBLEMS
Balaj, Mircea; Coroianu, Lucian;
  PDF(new window)
 Abstract
In this paper we give two matching theorems of Ky Fan type concerning open or closed coverings of nonempty convex sets in a topological vector space. One of them will permit us to put in evidence, when X and Y are convex sets in topological vector spaces, a new subclass of KKM(X, Y) different by any admissible class (X, Y). For this class of set-valued mappings we establish a KKM-type theorem which will be then used for obtaining existence theorems for the solutions of two types of simultaneous relation problems.
 Keywords
matching theorem;KKM theorem;KKM(X, Y);(X, Y);variational relation;
 Language
English
 Cited by
1.
Solutions existence for two types of mixed variational relation problems, Applicable Analysis, 2016, 95, 2, 426  crossref(new windwow)
2.
A Unifying Approach to Variational Relation Problems, Journal of Optimization Theory and Applications, 2012, 155, 2, 417  crossref(new windwow)
3.
Existence Theorems for a Variational Relation Problem, Numerical Functional Analysis and Optimization, 2016, 37, 4, 459  crossref(new windwow)
4.
Existence Criteria for the Solutions of Two Types of Variational Relation Problems, Journal of Optimization Theory and Applications, 2013, 156, 2, 232  crossref(new windwow)
 References
1.
M. Balaj, Admissible maps, intersection results, coincidence theorems, Comment. Math. Univ. Carolin. 42 (2001), no. 4, 753-762.

2.
M. Balaj and L. J. Lin, Generalized variational relation problems with applications, J. Optim. Theory Appl. 148 (2011), 1-13. crossref(new window)

3.
T. H. Chang and C. L. Yen, KKM property and xed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224-235. crossref(new window)

4.
C. R. Chen, S. J. Li, and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim. 45 (2009), no. 2, 309-318. crossref(new window)

5.
X. P. Ding, Xie Ping, and K. K. Tan, Matching theorems, fixed point theorems and minimax inequalities without convexity, J. Austral. Math. Soc. Ser. A 49 (1990), no. 1, 111-128. crossref(new window)

6.
K. Fan, A generalization of Tychonoff's xed point theorem, Math. Ann. 142 (1961), 305-310. crossref(new window)

7.
K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), no. 4, 519-537. crossref(new window)

8.
J. Y. Fu and A. H. Wan, Generalized vector equilibrium problems with set-valued map- pings, Math. Methods Oper. Res. 56 (2002), no. 2, 259-268. crossref(new window)

9.
J. C. Jeng, Y. Y. Huang, and H. L. Zhang, Characterization of maps having the KKM property, Soochow J. Math. 28 (2002), no. 3, 329-338.

10.
P. Q. Khanh and D. T. Luc, Stability of solutions in parametric variational relation problems, Set-Valued Anal. 16 (2008), no. 7-8, 1015-1035. crossref(new window)

11.
W. K. Kim, Some applications of the Kakutani fixed point theorem, J. Math. Anal. Appl. 121 (1987), no. 1, 119-122. crossref(new window)

12.
L. J. Lin and Q. H. Ansari, Systems of quasi-variational relations with applications, Nonlinear Anal. 72 (2010), no. 3-4, 1210-1220. crossref(new window)

13.
L. J. Lin and W. S. Du, Systems of equilibrium problems with applications to new variants of Ekeland's variational principle, fixed point theorems and parametric opti- mization problems, J. Global Optim. 40 (2008), no. 4, 663-677. crossref(new window)

14.
L. J. Lin and S. Y. Wang, Simultaneous variational relation problems and related ap- plications, Comput. Math. Appl. 58 (2009), no. 9, 1711-1721. crossref(new window)

15.
D. T. Luc, An abstract problem in variational analysis, J. Optim. Theory Appl. 138 (2008), no. 1, 65-76. crossref(new window)

16.
D. T. Luc, E. Sarabi, and A. Soubeyran, Existence of solutions in variational relation problems without convexity, J. Math. Anal. Appl. 364 (2010), no. 2, 544-555. crossref(new window)

17.
K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Politechnika, Lodzks, 1989.

18.
S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), no. 1, 164-176. crossref(new window)

19.
S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in "Fixed Point Theory and Applications" (K.-K. Tan, Ed.), pp. 248-277, World Scientific, River Edge, New Jersey, 1992.

20.
S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31 (1994), no. 3, 493-519.

21.
S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), no. 4, 803-829.

22.
S. Park, Fixed points of better admissible maps on generalized convex spaces, J. Korean Math. Soc. 37 (2000), no. 6, 885-899.

23.
S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18 (1993), 1-21.

24.
M. H. Shih, Covering properties of convex sets, Bull. London Math. Soc. 18 (1986), no. 1, 57-59. crossref(new window)

25.
M. H. Shih and K. K. Tan, Covering theorems of convex sets related to xed-point theorems, in "Nonlinear and Convex Analysis" (B. L. Lin, S. Simons, eds.), Marcel Dekker, New York, 1987.

26.
N. X. Tan, Quasivariational inequalities in topological linear locally convex Hausdorff spaces, Math. Nachr. 122 (1985), 231-245. crossref(new window)

27.
S. S. Zhang and Z. Zhang, On a class of new KKM theorem with applications, Appl. Math. Mech. 17 (1996), no. 9. 773-780.