MATCHING THEOREMS AND SIMULTANEOUS RELATION PROBLEMS

- Journal title : Bulletin of the Korean Mathematical Society
- Volume 48, Issue 5, 2011, pp.939-949
- Publisher : The Korean Mathematical Society
- DOI : 10.4134/BKMS.2011.48.5.939

Title & Authors

MATCHING THEOREMS AND SIMULTANEOUS RELATION PROBLEMS

Balaj, Mircea; Coroianu, Lucian;

Balaj, Mircea; Coroianu, Lucian;

Abstract

In this paper we give two matching theorems of Ky Fan type concerning open or closed coverings of nonempty convex sets in a topological vector space. One of them will permit us to put in evidence, when X and Y are convex sets in topological vector spaces, a new subclass of KKM(X, Y) different by any admissible class (X, Y). For this class of set-valued mappings we establish a KKM-type theorem which will be then used for obtaining existence theorems for the solutions of two types of simultaneous relation problems.

Keywords

matching theorem;KKM theorem;KKM(X, Y);(X, Y);variational relation;

Language

English

Cited by

1.

2.

3.

References

1.

M. Balaj, Admissible maps, intersection results, coincidence theorems, Comment. Math. Univ. Carolin. 42 (2001), no. 4, 753-762.

2.

M. Balaj and L. J. Lin, Generalized variational relation problems with applications, J. Optim. Theory Appl. 148 (2011), 1-13.

3.

T. H. Chang and C. L. Yen, KKM property and xed point theorems, J. Math. Anal. Appl. 203 (1996), no. 1, 224-235.

4.

C. R. Chen, S. J. Li, and K. L. Teo, Solution semicontinuity of parametric generalized vector equilibrium problems, J. Global Optim. 45 (2009), no. 2, 309-318.

5.

X. P. Ding, Xie Ping, and K. K. Tan, Matching theorems, fixed point theorems and minimax inequalities without convexity, J. Austral. Math. Soc. Ser. A 49 (1990), no. 1, 111-128.

7.

K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266 (1984), no. 4, 519-537.

8.

J. Y. Fu and A. H. Wan, Generalized vector equilibrium problems with set-valued map- pings, Math. Methods Oper. Res. 56 (2002), no. 2, 259-268.

9.

J. C. Jeng, Y. Y. Huang, and H. L. Zhang, Characterization of maps having the KKM property, Soochow J. Math. 28 (2002), no. 3, 329-338.

10.

P. Q. Khanh and D. T. Luc, Stability of solutions in parametric variational relation problems, Set-Valued Anal. 16 (2008), no. 7-8, 1015-1035.

11.

W. K. Kim, Some applications of the Kakutani fixed point theorem, J. Math. Anal. Appl. 121 (1987), no. 1, 119-122.

12.

L. J. Lin and Q. H. Ansari, Systems of quasi-variational relations with applications, Nonlinear Anal. 72 (2010), no. 3-4, 1210-1220.

13.

L. J. Lin and W. S. Du, Systems of equilibrium problems with applications to new variants of Ekeland's variational principle, fixed point theorems and parametric opti- mization problems, J. Global Optim. 40 (2008), no. 4, 663-677.

14.

L. J. Lin and S. Y. Wang, Simultaneous variational relation problems and related ap- plications, Comput. Math. Appl. 58 (2009), no. 9, 1711-1721.

15.

D. T. Luc, An abstract problem in variational analysis, J. Optim. Theory Appl. 138 (2008), no. 1, 65-76.

16.

D. T. Luc, E. Sarabi, and A. Soubeyran, Existence of solutions in variational relation problems without convexity, J. Math. Anal. Appl. 364 (2010), no. 2, 544-555.

17.

K. Nikodem, K-Convex and K-Concave Set-Valued Functions, Politechnika, Lodzks, 1989.

18.

S. Park, Generalizations of Ky Fan's matching theorems and their applications, J. Math. Anal. Appl. 141 (1989), no. 1, 164-176.

19.

S. Park, Some coincidence theorems on acyclic multifunctions and applications to KKM theory, in "Fixed Point Theory and Applications" (K.-K. Tan, Ed.), pp. 248-277, World Scientific, River Edge, New Jersey, 1992.

20.

S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31 (1994), no. 3, 493-519.

21.

S. Park, A unified fixed point theory of multimaps on topological vector spaces, J. Korean Math. Soc. 35 (1998), no. 4, 803-829.

22.

S. Park, Fixed points of better admissible maps on generalized convex spaces, J. Korean Math. Soc. 37 (2000), no. 6, 885-899.

23.

S. Park and H. Kim, Admissible classes of multifunctions on generalized convex spaces, Proc. Coll. Natur. Sci. Seoul National University 18 (1993), 1-21.

24.

25.

M. H. Shih and K. K. Tan, Covering theorems of convex sets related to xed-point theorems, in "Nonlinear and Convex Analysis" (B. L. Lin, S. Simons, eds.), Marcel Dekker, New York, 1987.

26.

N. X. Tan, Quasivariational inequalities in topological linear locally convex Hausdorff spaces, Math. Nachr. 122 (1985), 231-245.

27.

S. S. Zhang and Z. Zhang, On a class of new KKM theorem with applications, Appl. Math. Mech. 17 (1996), no. 9. 773-780.