JOURNAL BROWSE
Search
Advanced SearchSearch Tips
ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS
facebook(new window)  Pirnt(new window) E-mail(new window) Excel Download
 Title & Authors
ON THE STABILITY OF BI-DERIVATIONS IN BANACH ALGEBRAS
Jung, Yong-Soo; Park, Kyoo-Hong;
  PDF(new window)
 Abstract
Let A be a Banach algebra and let f : be an approximate bi-derivation in the sense of Hyers-Ulam-Rassias. In this note, we proves the Hyers-Ulam-Rassias stability of bi-derivations on Banach algebras. If, in addition, A is unital, then f : is an exact bi-derivation. Moreover, if A is unital, prime and f is symmetric, then f = 0.
 Keywords
bi-derivation;approximate bi-derivation;stability;
 Language
English
 Cited by
 References
1.
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66. crossref(new window)

2.
R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), no. 1, 167-173.

3.
J.-H. Bae and W.-G. Park, Approximate bi-homomorphisms and bi-derivations in $C^{\ast}$- ternary algebras, Bull. Korean Math. Soc. 47 (2010), no. 1, 195-209. crossref(new window)

4.
M. Bresar, Commuting maps: a survey, Taiwanese J. Math. 8 (2004), no. 3, 361-397.

5.
S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64. crossref(new window)

6.
Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431-434. crossref(new window)

7.
P. Gavruta, A generalization of the Hyers-Ulam-Rassias Stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436. crossref(new window)

8.
D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27 (1941), 222-224. crossref(new window)

9.
D. H. Hyers, A remark on symmetric bi-additive functions having nonnegative diagonaliza- tion, Glas. Mat. Ser. III 15(35) (1980), 279-282.

10.
S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.

11.
Gy. Maksa, On the trace of symmetric bi-derivations, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 303-307.

12.
T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Ba- nach algebras, J. Math. Anal. Appl. 319 (2006), no. 2, 522-530. crossref(new window)

13.
C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118. crossref(new window)

14.
C. Park and J. Hou, Homomorphisms between $C^{\ast}$- algebras associated with the Trif functional equation and linear derivations on $C^{\ast}$- algebras, J. Korean Math. Soc. 41 (2004), no. 3, 461-477. crossref(new window)

15.
J. M. Rassias and H.-M. Kim, Approximate homomorphisms and derivations between $C^{\ast}$-ternary algebras, J. Math. Phys. 49 (2008), no. 6, 10 pp.

16.
Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300. crossref(new window)

17.
Th. M. Rassias (Ed.), "Functional Equations and Inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.

18.
P. Semrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integral Equations Operator Theory 18 (1994), no. 1, 118-122. crossref(new window)

19.
S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.